Comparing EISCAT cusp observations with in-situ drivers during active Poleward Moving Auroral Form Event

David Kenward

NEROC Symposium
16 November 2018
Outline

- Introduction and motivation
 - The cusp and PMAFs
 - Upwelling/Neutral upwelling discussion
 - Description of RENU2 campaign event
- EISCAT Data
 - Time history/overview
 - Calculation of Ambipolar field
- In-situ Data from RENU2
 - Characterizing the drivers
- Comparison to electrodynamic model
Open field lines allow direct entry of solar wind particles into ionosphere

Collection of thin, wispy arcs which convect poleward as a general group

Highly structured spatially, temporally
Introduction

PMAF frames – Evolution of one PMAF

16 November 2018
Neutral Upwelling

CHAMP
400 km, polar orbit

Deceleration spikes in cusp region

Observed in conjunction with small-scale currents

RENU2 Goal: Fully characterize the conditions during a PMAF event to better understand the driving mechanism behind neutral upwelling in the cusp

25 Sep. 2000

Lühr et al [2004]

Particle precipitation, waves

Joule heating

Thermosphere

Ionosphere

100 km

600 km
Upwelling Processes

Type I
Large scale Poynting Flux and joule heating cause ion scale height increase

Type II
Soft electron precipitation heats the ambient ionosphere and causes electron scale height increase

Upwelling of ions transfers momentum to neutral thermosphere
Neutral Gas Density

- Neutral Upwelling

Density "bump" ≈10%
Not large enough to register in statistical surveys

Average of OI 630.0 nm emissions acquired by the UiO ASI (67 min.)

Solid black line ≈ PMAF orientation
EISCAT
PMAFs are clearly visible in the electron density and temperature plots (top two plots).

Ion temperature enhancements also visible.

Some weak upwelling signatures throughout.

UiO All-Sky Imager (ASI) at KHO real-time monitor:
- O I 630.0 nm
- Mapped to MLAT (at 250 km)
Ambipolar field

Ambipolar field more effectively driven by T_e enhancements

At high altitudes $\text{Grad}(T_e)$ is small, so the density term dominates [Cohen et al, 2015]

\[E_a = \frac{-1}{e n_e} \nabla (k_B n_e T_e) = \frac{-k_B}{e} \left[\nabla T_e + T_e \frac{\nabla n_e}{n_e} \right] \]
Ambipolar field – preflight
Ambipolar Field
Launch profile

Trajectory east of nominal (within margin)

Actually improved coverage of event!
In-situ drivers – electron precipitation

RENU 2 Electron Data

Energy (keV)

Characteristic Energy

mW/m^2

Particle

Poynting

$T_e (eV)$

Flight time (sec)

MAIN

SUB
Comparisons

Ionization Count

Electron Temperature

Plasma Number Density

Ion Velocity

Ion Drift (ms⁻¹)

Electron Temperature (K)

Te

07:37:55-07:39:56

07:39:56-07:41:58

Ne

07:37:55-07:39:56

07:39:56-07:41:58

Modeling

16 November 2018
Conclusions

• PMAFs are highly structured both temporally and spatially and present an ideal event type for cross-scale coupling studies

• Ionospheric response to PMAF drivers shows two time scales: rapid, localized temperature enhancements and more widespread, integrated heating effects

• Modeling this type of response based only on electron precipitation shows similar behavior to observed; inclusion of Poynting flux data should bring this closer
Questions?

- GRL Special issue this winter on RENU2 results

- AGU Special Session — SA016: Observation and modeling of high latitude thermosphere phenomena driven by magnetospheric forcing.