Event Horizon Telescope
- expansion plans

Maciek Wielgus
on behalf of the EHT Collaboration

Black Hole Initiative, Harvard University
Smithsonian Astrophysical Observatory

NEROC, Haystack
1 November 2019
Event Horizon Telescope: the Team

Nijmegen, Netherlands, November 2018

- over 200 scientists
- contributors from 18 countries
- over 60 institutions
Results so far: M87 (EHTC+)

Nearby LLAGN

Redshift: 0.00428 (53 mln ly)

BH mass: $6.5 \times 10^9 \, M_{\odot}$

EHT resolution: 400 au \sim 3 Rs

Kim et al. 2018

Event Horizon Telescope
Results so far: M87 (EHTC+)
Nearby LLAGN

Kim et al. 2018
Results so far: M87 (EHTC+)

Nearby LLAGN

ψ_{im} = 165°
ψ_{jet} = 288°

ψ_{sim} = 170°
ψ_{bh} = 288°
Results so far: M87 (EHTC+)

Nearby LLAGN

EHT published so far on about 5% of the 2017 campaign data, MUCH MORE to come!
Event Horizon Telescope

EHT 2019. Paper II. Instrument

Maciek Wielgus

NEROC, Haystack, 1 November 2019
Improvement considerations

1. **Coverage:**

 N telescopes gives N(N-1)/2 visibility measurements
Improvement considerations

1. **Coverage:**

 N telescopes gives \(N(N-1)/2 \) visibility measurements

2. **Dynamic range:**

 Improves with number of baselines
Improvement considerations

1. **Coverage:**
 N telescopes gives $N(N-1)/2$ visibility measurements

2. **Dynamic range:**
 Improves with number of baselines

3. **Resolution:**
 Improves with shorter wavelength / longer baseline
Improvement considerations

1. **Coverage:**
 N telescopes gives $\frac{N(N-1)}{2}$ visibility measurements

2. **Dynamic range:**
 Improves with number of baselines

3. **Resolution:**
 Improves with shorter wavelength / longer baseline

4. **Sensitivity:**
 Improves with bandwidth
Improvement considerations

1. Coverage:
 N telescopes gives \(N(N-1)/2 \) visibility measurements

2. Dynamic range:
 Improves with number of baselines

3. Resolution:
 Improves with shorter wavelength / longer baseline

4. Sensitivity:
 Improves with bandwidth

5. Speed of the aperture synthesis:
 Can be improved with space VLBI
Improvement considerations

1. Coverage:
 N telescopes gives $\frac{N(N-1)}{2}$ visibility measurements

2. Dynamic range:
 Improves with number of baselines

3. Resolution:
 Improves with shorter wavelength / longer baseline

4. Sensitivity:
 Improves with bandwidth

5. Speed of the aperture synthesis:
 Can be improved with space VLBI

6. Algorithmic improvements:
 Will reduce systematics and increase sensitivity
Astro2020 APC White Paper

Studying Black Holes on Horizon Scales with VLBI Ground Arrays

Lindy Blackburn1,2,*, Sheperd Doeleman1,2,*, Jason Dexter12, José L. Gómez16, Michael D. Johnson1,2, Daniel C. Palumbo1,2, Jonathan Weintraub1,2, Joseph R. Farah1,2,21, Vincent Fish4, Laurent Loinard18,19, Colin Lonsdale4, Gopal Narayanan28, Nimesh A. Patel2, Dominic W. Pesce1,2, Alexander Raymond1,2, Remo Tilanus17,22,23, Maciek Wielgus1,2, Kazunori Akiyama1,3,4,5, Geoffrey Bower6, Avery Broderick7,8,9, Roger Deane10,11, Christian Michael Fromm13, Charles Gammie14,15, Roman Gold13, Michael Janssen17, Tomohisa Kawashima4, Thomas Krichbaum29, Daniel P. Marrone20, Lynn D. Matthews4, Yosuke Mizuno13, Luciano Rezzolla13, Freerk Roelofs17, Eduardo Ros29, Tuomas K. Savolainen20,30,31, Feng Yuan24,25,26, Guangyao Zhao27

1 Black Hole Initiative at Harvard University, 20 Garden Street, Cambridge, MA 02138, USA
2 Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA
3 National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA
4 Massachusetts Institute of Technology, Haystack Observatory, 99 Millstone Road, Westford, MA 01886, USA
5 National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
6 Institute of Astronomy and Astrophysics, Academia Sinica, 645 N. A'ohoku Place, Hilo, HI 96720, USA
7 Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON, N2L 2Y5, Canada
8 Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
9 and Particle Physics (IMAPP), Radboud University, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
10 Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Morelia 58089, México
11 Instituto de Astronomía, Universidad Nacional Autónoma de México, CdMx 04510, México
12 Steward Observatory and Department of Astronomy, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721, USA
13 University of Massachusetts Boston, 100 William T, Morrissey Blvd, Boston, MA 02125, USA
14 Leiden Observatory—Allegro, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands
15 Netherlands Organisation for Scientific Research (NWO), Postbus 92198, 2509 AC Den Haag, The Netherlands
16 Shanghai Astronomical Observatory, Chinese Academy of Sciences.
Astro2020 APC White Paper

Studying black holes on horizon scales with space-VLBI

KARI HAWORTH, MICHAEL D. JOHNSON, DOMINIC W. PESCE, DANIEL C. M. PALUMBO, LINDY BLACKBURN, KAZUNORI AKIYAMA, DON BOROSON, KATHERINE L. BOUMAN, JOSEPH R. FARAH, VINCENT L. FISH, MAREKI HONMA, TOMOHISA KAWASHIMA, MOTOKI KINO, ALEXANDER RAYMOND, MARK SILVER, JONATHAN WEINTROUB, MACIEK WIELGUS, SHEPERD S. DOELEMAN, JOSE L. GÓMEZ, JENS KAUFFMANN, GARRETT K. KEATING, THOMAS P. KRICHBAUM, LAURENT LOINARD, GOPAL NARAYANAN, AHIRO DOI, DAVID J. JAMES, DANIEL P. MARRONE, YOSUKE MIZUNO, HIROSHI NAGAI

1 Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA
2 Black Hole Initiative at Harvard University, 20 Garden Street, Cambridge, MA 02138, USA
3 Massachusetts Institute of Technology, Haystack Observatory, 99 Millstone Road, Westford, MA 01886, USA
4 Department of Astronomical Science, The Graduate University for Advanced Studies (SOKENDAI), 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
5 Department of Astronomy, University of Massachusetts, 01003, Amherst, MA, USA
6 Instituto de Astrofísica de Andalucía-CSIC, Glorieta de la Astronomía s/n, 18008 Granada, Spain
7 Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA
8 Department of Physics, University of California, Santa Barbara, CA 93106, USA
9 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, United Kingdom
10 Department of Physics, University of California, Berkeley, CA 94720, USA
11 Department of Physics, University of California, Berkeley, CA 94720, USA
12 Department of Physics, University of California, Berkeley, CA 94720, USA
13 Department of Physics, University of California, Berkeley, CA 94720, USA
14 Department of Physics, University of California, Berkeley, CA 94720, USA
15 Department of Physics, University of California, Berkeley, CA 94720, USA
16 Department of Physics, University of California, Berkeley, CA 94720, USA
17 Department of Physics, University of California, Berkeley, CA 94720, USA
18 Department of Physics, University of California, Berkeley, CA 94720, USA
19 Department of Physics, University of California, Berkeley, CA 94720, USA
Astro2020 APC White Paper

Extremely long baseline interferometry with Origins Space Telescope

DOMINIC W. PESCE1,2, KARI HAWORTH1, GARY J. MELNICK1, LINDY BLACKBURN1,2, MACIEK WIELGUS1,2, MICHAEL D. JOHNSON1,2, ALEXANDER RAYMOND1,2, JONATHAN WEINTROUB1, DANIEL C. M. PALUMBO1,2, SHEPERD S. DOELEMAN1,2, DAVID J. JAMES1,2

Abstract: Operating 1.5×10^6 km from Earth at the Sun-Earth L2 Lagrange point, the Origins Space Telescope equipped with a slightly modified version of its HERO heterodyne instrument could function as a uniquely valuable node in a VLBI network. The unprecedented angular resolution resulting from the combination of Origins with existing ground-based millimeter/submillimeter telescope arrays would increase the number of spatially resolvable black holes by a factor of 10^6, permit the study of these black holes across all of cosmic history, and enable new tests of general relativity by unveiling the photon ring substructure in the nearest black holes.
Array expansion

Studying Black Holes on Horizon Scales with VLBI Ground Arrays
Array expansion

Studying Black Holes on Horizon Scales with VLBI Ground Arrays

Maciek Wielgus
NEROC, Haystack, 1 November 2019
Array expansion

Studying Black Holes on Horizon Scales with VLBI Ground Arrays
Array expansion + dual frequency

Studying Black Holes on Horizon Scales with VLBI Ground Arrays
Dynamic range improvement

Studying Black Holes on Horizon Scales with VLBI Ground Arrays

Maciek Wielgus

NEROC, Haystack, 1 November 2019
Expansion of the EHT ground array

- multiple new sites with 6-12 m dishes,
- upgrading powerful anchor stations, able to connect weaker array elements,
- developing double-frequency technology,
- expanding bandwidth, possibly to 256 Gbps
- data transport developments
Adding a LEO dish: aperture synthesis speed

Studying black holes on horizon scales with space-VLBI

Maciek Wielgus
NEROC, Haystack, 1 November 2019
Adding a LEO dish: aperture synthesis speed

Observing rapidly varying Sgr A*

Studying black holes on horizon scales with space-VLBI

45min of observations

Maciek Wielgus
NEROC, Haystack, 1 November 2019
More shadows with higher resolution!

Studying black holes on horizon scales with space-VLBI
EHT expansion with a LEO antenna

- single 3-4 m dish on the low Earth orbit,
- strong anchor stations (ALMA, NOEMA, LMT) allow for small orbiting dish,
- 2 polarizations x 2 bands x 8 GHz,
- enabling observations in up to 690 GHz frequency with detections to limited number of suitable ground stations (ALMA, SPT),
- technical developments on digital processing system and local oscillator (e.g. high-performance oven-controlled quartz crystal oscillators),
- solid state recorders,
- laser downlink (hundreds Gbps),
- possibly computationally challenging fringe fitting with imperfect position information

Studying black holes on horizon scales with space-VLBI
VLBI on extreme space baselines

Extremely long baseline interferometry with Origins Space Telescope

Johnson et al. ArXiv: 1907.04329
Universal interferometric signatures of as black hole’s photon ring
VLBI on extreme space baselines

Extremely long baseline interferometry with Origins Space Telescope

Johnson et al. ArXiv: 1907.04329
Universal interferometric signatures of as black hole’s photon ring
VLBI on extreme space baselines

Extremely long baseline interferometry with Origins Space Telescope

Johnson et al. ArXiv: 1907.04329
Universal interferometric signatures of as black hole’s photon ring
Thanks!

Also check out
Lindy Blackburn’s poster
on the future of the EHT