Masers as Probes of Galactic Structure

Mark J. Reid
Harvard-Smithsonian Center for Astrophysics

Collaborators:

K. Menten, A. Brunthaler, K. Immer, Y. Choi, A. Sanna, B. Zhang (MPIfR)
X-W Zheng, Y. Xu, Y. Wu (Nanjing)
L. Moscadelli (Arcetri)
G. Moellenbrock (NRAO)
M. Honma, T. Hirota, M. Sato (NAOJ)
T. Dame (CfA)
A. Bartkiewicz (Torun)
K. Rygl (INAF, Rome)
K. Hachisuka (Shanghai)
What does the Milky Way look like?

GAIA range (± 10 to 20μas); but cannot see through dust in Galactic plane

VLBI range (± 5 to 20μas): can “see” through plane to massive star forming regions that trace spiral structure
Very Long Baseline Interferometry: VLBA, VERA & EVN

- Radio waves “see” through galaxy
- Can “synthesize” telescope the size of the Earth

Fringe spacing (eg, VLBA):
\[\theta_f \sim \frac{\lambda}{D} \sim 1 \text{ cm} / 8000 \text{ km} = 250 \mu\text{as} \]

Centroid Precision:
\[0.5 \theta_f / \text{SNR} \sim 10 \mu\text{as} \]

Systematics:
path length errors \sim 2 \text{ cm} (\sim 2 \lambda)
shift position by \sim 2\theta_f \sim 500 \mu\text{as}

Relative positions (to QSOs):
\[\Delta \Theta \sim 1 \text{ deg} (0.02 \text{ rad}) \]
cancel systematics: \[\Delta \Theta \ast 2\theta_f \sim 10 \mu\text{as} \]
Parallax Signatures

Projected Earth's Orbit

Proper Motion

North Offset (mas)

East Offset (mas)

Offset (mas)

Epoch (years)

2008 2009 2010

2008 2009 2010

Offset (mas)

-1 -0.5 0 0.5 1

-1 -0.5 0 0.5 1
Orion Nebular Cluster Parallax

VLBA: \(\Pi = 2.42 \pm 0.04 \) mas
D = 414 ± 7 pc

VERA: D = 419 ± 6 pc

Menten, Reid, Forbrich & Brunthaler (2007)
Mapping the Milky Way

6.7/12.2 GHz CH$_3$OH masers

22 GHz H$_2$O masers

VLBA Key Science Project: 5000 hours over 5 years to measure hundreds of parallaxes/proper motions

Observations for ~70 masers started 2010/2011 recently completed
Parallax for Sgr B2(Middle) H$_2$O masers

$\Pi = 129 \pm 12 \, \mu\text{as} \quad (D=7.8 \pm 0.8 \, \text{kpc})$
Parallax for W 49N H$_2$O masers

$\Pi = 82 \pm 6 \; \mu$as (D=12.2 \pm 0.9 kpc)
Mapping Spiral Structure

• Preliminary results of parallaxes from VLBA, EVN & VERA:
 • Arms assigned by CO
 • Tracing most spiral arms
 • Inner, bar-region is complicated

Background: artist conception by Robert Hurt (NASA: SSC)
Spiral Arm Pitch Angles

• For a log-periodic spiral:
 \[
 \log(R / R_{\text{ref}}) = -\left(\beta - \beta_{\text{ref}} \right) \tan \psi
 \]

• Outer spiral arms: \(~13^\circ\) pitch angles

• Inner arms may have smaller pitch angels (need more observations)
\[\Theta_o \approx 220 \text{ km/s} \]
\[V_{\text{sun}} \approx 20 \text{ km/s} \]

Convert observations from Heliocentric to Galactocentric coordinates.
The Milky Way’s Rotation Curve

$\Theta_0 = 245 \text{ km/s}$

$\Theta_0 = 220 \text{ km/s}$

Blue points moved up 25 km/s
Modeling Parallax & Proper Motion Data

Data: have complete 3-D position and velocity information for each source:

Independent variables: α, δ

Data to fit: $\pi, \mu_\alpha, \mu_\delta, V$

Data uncertainties include:
- measurement errors
- source "noise" of 7 km/s per component (Virial motions in MSFR)

Model: Galaxy with axially symmetric rotation:

R_0 Distance of Sun from G. C.
Θ_0 Rotation speed of Galaxy at R_0
$\partial \Theta / \partial R$ Derivative of Θ with R: $\Theta(R) \equiv \Theta_0 + \partial \Theta / \partial R \ (R - R_0)$

U_{sun} Solar motion toward G. C.
" " in direction of Galactic rotation
" " toward N. G. P.

V_{sun}

W_{sun}

$<U_{\text{src}}>$ Average source peculiar motion toward G. C.
" " " " " " " " " " in direction of Galactic rotation

$<V_{\text{src}}>$
“Outlier-tolerant” Bayesian fitting

Prob(Di|M, si) \propto \exp(- R_i^2 / 2)

R_i = (D_i - M_i) / \sigma_i

Prob(Di|M, si) \propto (1 - \exp(- R_i^2 / 2)) / R_i^2

Sivia “A Bayesian Tutorial”
Model Fitting Results for 93 Sources

<table>
<thead>
<tr>
<th>Method / Rotation Curve used</th>
<th>R_0 (kpc)</th>
<th>Θ_0 (km/s)</th>
<th>$d\Theta/dR$ (km/s/kpc)</th>
<th>$<V_{src}>$ (km/s)</th>
<th>$<U_{src}>$ (km/s)</th>
<th>Θ_0/R_0 (km/s/kpc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Outlier-tolerant" Bayesian fitting Flat Rotation Curve</td>
<td>8.39 ± 0.18</td>
<td>245 ± 7</td>
<td>[0.0]</td>
<td>-8 ± 2</td>
<td>5 ± 3</td>
<td>(28.2)</td>
</tr>
<tr>
<td>Sloped " "</td>
<td>8.38 ± 0.18</td>
<td>243 ± 7</td>
<td>-0.4 ± 0.7</td>
<td>-8 ± 2</td>
<td>6 ± 2</td>
<td>(29.0)</td>
</tr>
<tr>
<td>Least-Squares fitting: removing 13 outliers (>3σ):</td>
<td>8.30 ± 0.09</td>
<td>244 ± 4</td>
<td>-0.3 ± 0.4</td>
<td>-8 ± 2</td>
<td>5 ± 2</td>
<td>(29.4)</td>
</tr>
</tbody>
</table>

Notes:
- Assuming Solar Motion V-component = 12 km/s (Schönenrich et al 2010)
- $<V_{src}>$ = average deviation from circular rotation of maser stars
- $<U_{src}>$ = average motion toward Galactic Center
- $\Theta_0/R_0 = 28.8 \pm 0.2$ km/s/kpc from proper motion of Sgr A* (Reid & Brunthaler 2004)
The Milky Way’s Rotation Curve

- For $R_0 = 8.4$ kpc, $\Theta_0 = 243$ km/s
- Assumes Schoenrich Solar Motion
- Corrected for maser counter-rotation

New and direct result based on 3-D motions “gold standard” distances
Conclusions

• VLBA, VERA & EVN parallaxes tracing spiral structure of Milky Way

• Milky Way has 4 major gas arms (and minor ones near the bar)

• Outer arm spiral pitch angles ~13°

• Star forming regions “counter-rotate” by ~8 km/s (for $V_{\text{sun}}=12$ km/s)

• Parallax/proper motions: $R_0 \sim 8.38 \pm 0.18$ kpc; $\Theta_0 \sim 243 \pm 7$ km/s/kpc
Conclusions

• VLBA, VERA & EVN parallaxes to massive young stars (via masers) tracing spiral structure of Milky Way

• Milky Way has 4 major gas arms (and minor ones near the bar)

• Outer arm spiral pitch angles ~13°

• Star forming regions “counter-rotate” by ~8 km/s (for $V_{sun} = 12$ km/s)

• Parallax/proper motions: $R_0 \sim 8.38 \pm 0.18$ kpc; $\Theta_0 \sim 243 \pm 7$ km/s/kpc

G.C. stellar orbits + Sgr A* p.m.: $R_0 \sim 8.2 \pm 0.3$ kpc; $\Theta_0 \sim 236 \pm 10$ km/s/kpc
Is Θ_0 really >220km/s?

- Parallax/Proper Motions of Star Forming Regions

 $R_0 = 8.4 \pm 0.2$ kpc & $\Theta_0 = 243 \pm 7$ km/s

 $\Theta_0 / R_0 = 29.0 \pm 0.9$ km/s/kpc

 (assuming Schoenrich, Binney & Dehnen 2010 Solar Motion)

- Sgr A*’s proper motion (caused by Sun’s Galactic orbit)

 $\Theta_0 / R_0 = 28.62 \pm 0.15$ km/s/kpc

 (Reid & Brunthaler 2004)

IR stellar orbits

$R_0 = 8.3 \pm 0.3$ kpc

(Ghez et al 2008; Gillessen et al 2009)

Hence, $\Theta_0 = 238 \pm 9$ km/s

- Combined result:

 $\Theta_0 = 241 \pm 6$ km/s
Carbon Monoxide (CO) Longitude-Velocity Plot

Dame, Hartmann & Thaddeus (2001)
Counter-Rotation of Star Forming Regions

Compute Galacto-centric V
Transform to frame rotating at $\Theta_0 = 250$ km/s (yellow)
See peculiar (non-circular) motions …clear counter-rotation

Transform to frame rotating at $\Theta_0 = 235$ km/s (red)
Still counter-rotating
Sensitivity to Rotation Curve

<table>
<thead>
<tr>
<th>Method / Rotation Curve used</th>
<th>R_0 (kpc)</th>
<th>Θ_0 (km/s)</th>
<th>$\frac{d\Theta}{dR}$ (km/s/kpc)</th>
<th>C.R. (km/s)</th>
<th>G.C. (km/s)</th>
<th>$\frac{\Theta_0}{R_0}$ (km/s/kpc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat Rotation Curve</td>
<td>8.51 ± 0.25</td>
<td>244 ± 9</td>
<td>5 ± 2</td>
<td>5 ± 3</td>
<td>(28.6)</td>
<td></td>
</tr>
<tr>
<td>Sloped ““</td>
<td>8.53 ± 0.27</td>
<td>246 ± 9</td>
<td>1.1 ± 0.9</td>
<td>6 ± 2</td>
<td>5 ± 3</td>
<td>(28.9)</td>
</tr>
<tr>
<td>Brand-Blitz formulation</td>
<td>8.64 ± 0.28</td>
<td>250 ± 9</td>
<td>.06 ± .03</td>
<td>[0]</td>
<td>6 ± 2</td>
<td>5 ± 3 (29.0)</td>
</tr>
<tr>
<td>Polynomial formulation</td>
<td>8.77 ± 0.32</td>
<td>253 ± 10</td>
<td>-1.0 ± 1 -1.5 ± .5</td>
<td>5 ± 2</td>
<td>5 ± 3</td>
<td>(28.8)</td>
</tr>
<tr>
<td>“Universal” formulation</td>
<td>8.80 ± 0.30</td>
<td>250 ± 11</td>
<td>1.1 ± .2 1.6 ± .7</td>
<td>5 ± 2</td>
<td>5 ± 3</td>
<td>(28.4)</td>
</tr>
</tbody>
</table>

“Error-tolerant” Bayesian fitting:
$\text{Prob}(D_i|M) \propto \left(1 - \exp(- R_i^2 /2) \right) / R_i^2$
where $R_i = (D_i - M_i) / \sigma_i$

R.C. params
- a_1
- a_2

Brand-Blitz
\[\Theta = \Theta_0 \rho^{a_1} + a_2 \]

Polynomial
\[\Theta = \Theta_0 + a_1 (\rho - 1) + a_2 (\rho - 1)^2 \]

Universal
\[\Theta = f(\Theta_0, R_{opt} = a_1, R_0, L = a_2 L_*) \]
Sgr A*’s Proper Motion

\[\mu = \frac{\Theta_0 + V}{R_0} \]

220 km/s
8.4 kpc
Proper Motion of Sgr A*

- Parallel to Galactic Plane:
 \[\Theta_o/R_o = 28.62 \pm 0.15 \text{ km/s/kpc} \]
 (after removing \(V=12 \text{ km/s} \))

Remove \(\Theta_o/R_o = 29.4 \pm 0.9 \text{ km/s/kpc} \)

Sgr A*’s motion \(\parallel \) to Gal. Plane
 \[-7.2 \pm 8.5 \text{ km/s} \ (R_o/8 \text{ kpc}) \]

- Perpendicular to Gal. Plane:
 \[-7.6 \pm 0.7 \text{ km/s} \]

Remove 7.2 km/s motion of Sun

Sgr A*’s motion \(\perp \) to Gal. Plane
 \[-0.4 \pm 0.9 \text{ km/s} \]!
Effects of Increasing Θ_0

- Reduces kinematic distances: D_k by 15%, hence...
 - Molecular cloud sizes ($R \propto \varphi D$) by 15%
 - Young star luminosities: $L \propto R^2$ by 30% (increasing YSO ages)
 - Cloud masses (from column density & size): $M \propto R^2$ by 30%

- Milky Way’s dark matter halo mass:
 $$M \propto (V_{\text{max}})^2 R_{\text{Vir}}$$
 $$V_{\text{max}} \propto \Theta_0 \quad \& \quad R_{\text{Vir}} \propto \Theta_0$$
 $$M \propto \Theta_0^3 \quad \text{or up by 50%}$$

- Increasing Θ_0, increases expected dark matter annihilation signals

- Largest uncertainty for modeling Hulse-Taylor binary pulsar timing is accounting for the acceleration of the Sun in its Galactic Orbit: Θ^2/R_0
Effects of Increasing Θ_0

- 1) Increases mass and overall size of Galaxy
- 2) Decreases velocity of LMC with respect to M.W.

Both help bind LMC to M.W. (Shattow & Loeb 2009)

- Increases likelihood of an Andromeda-Milky Way collision