VLBI Basics

Pedro Elosegui MIT Haystack Observatory

With big thanks to many of you, here and "out there"

Some of the topics we will cover today

- Geodetic radio telescopes
- VLBI vs. GPS concept
- Station requirements
- VLBI digitization
- Correlation
- Geodetic post-processing, a dynamic planet

VLBI Astrometry

GPS Geodesy

Westford

KPGO/VGOS

VLBI Geodesy

WESTFORD RADIO

GPS

VLBI Global Observing System (VGOS) Multi-technique core sites

What is VLB ... A/I?

What is VLB ... I? Very Long Baseline Interferometry

VLBI today

VGOS virtues (vs. "legacy") in a nutshell

Broad bandwidth (better sensitivity)

Basic elements of VLBI (geodesy)

- Antennas
- Receivers
- Analog and digital stages
- Recorders and data transport
- Correlation, post-processing
- Imaging, positioning, orientation

VLBI (VGOS) station

High-precision geodetic science

Observation = Model + Error

 $\tau_{clk} + \tau_{ion} + \tau_{trop} + \tau_{inst} + \tau_{rel} + \tau_{other}$

Signal (geometry => position, orientation) rest is all "noise"

GNSS

DORIS

Practical VLBI observational goals

High-precision geodesy means observable with small uncertainty

$$\sigma_{\tau} = \frac{1}{2\pi} \cdot \frac{1}{SNR\,\Delta\nu}$$

• Sensitivity = ability to "see" faint objects (interferometer, Jy)

$$\Delta S = \frac{1}{\eta_s} \cdot \sqrt{\frac{SEFD_i \cdot SEFD_j}{2\,\Delta\nu\,\tau_{acc}}}$$

• Resolution = ability to "see" details in distant objects

What determines sensitivity?

- Amount of energy collected (Ta, gain, efficiency)
 - Size and quality of the collecting area
 - but cost of bigger antennas tends to increase as D^2.7 (i.e., doubling antenna diameter raises price by ~6!)
 - Bandwidth of the energy spectrum
 - sensitivity improves as square root of observed bandwidth, cost effective
- Quietness of the receiving detectors (Tsys)
 - many receivers are already approaching quantum noise limits, or are dominated by atmospheric noise

A few resolution examples

100 m telescope at λ =1cm (30 GHz) \rightarrow ~20 arcsec

VLA (~35 km) at λ =1cm \rightarrow ~0.1 arcsec (~2 km on moon; ~2 m at 5000 km)

10,000 km telescope at λ =1cm \rightarrow ~200 micro-arcsec (~40 cm on moon; ~5 mm at 5000 km)

10,000 km telescope at λ =1mm \rightarrow ~20 micro-arcsec (~4 cm on moon; ~0.1 m at 1000 km)

Principle of two-element interferometer

- Projected baseline = D*cos θ
- Fringe-pattern spacing on sky
 - = λ /(projected baseline)
 - = $\lambda/(D^*\cos\theta)$
- As source moves, response changes as cos (projection)

Fringe pattern

Interferometric response to point source

Extended radio source

Extended radio source (one fringe width)

Geodetic VLBI radio sources

- VLBI geodesy requires sources that are bright, compact, and "stable" both in time and frequency; a challenge
- The total number of available useful sources for current geodetic-VLBI capabilities is small (<~1000)
- VGOS, with its improved sensitivity, should significantly improve the number of available sources

"Ugly" (3C279)

Principle of (geodetic) VLBI

- Measure time-ofarrival difference (delay) accurately
- mm-level positioning requires delay precision of a few picoseconds (3 ps = 1 mm)

VLBI station requirements

- Observing "noise" from quasars (contaminated by various noise sources)
- Measuring a (group) delay (a time measurement) whose resolution is inverse of spanned bandwidth
 - Requires wideband feeds and receivers (VGOS 2-14 GHz)
 - Multi-band systems to correct for ionosphere delays

Phase (cycles)

VLBI station requirements

- Observing "noise" from quasars (contaminated by various noise sources)
- Measuring a (group) delay (a time measurement), whose resolution is inversely of spanned bandwidth
 - Requires wideband feeds and receivers (VGOS 2-14 GHz)
 - Multi-band systems to correct for ionosphere delays
 - Low-noise receivers (low SEFD, antenna efficiency, cryogenics)
 - Antennas that are large, efficient, and fast (atmosphere)
 - High-speed recording for high SNR via large bandwidth (Nyquist)

VLBI station requirements

- Observing "noise" from quasars (contaminated by various noise sources)
- Measuring a (group) delay (a time measurement) whose resolution is inverse of spanned bandwidth
 - Requires wideband feeds and receivers (VGOS 2-14 GHz)
 - Multi-band systems to correct for ionosphere delays
 - Low-noise receivers (low SEFD, antenna efficiency, cryogenics)
 - Antennas that are large, efficient, and fast (atmosphere)
 - High-speed recording for high SNR via large bandwidth (Nyquist)
 - Hydrogen maser frequency standards

Stability of various frequency standards

Allen Variance

MIT HAYSTACK OBSERVATORY

Log Time (sec)

VLBI station requirements

- Observing "noise" from quasars (contaminated by various noise sources)
- Measuring a (group) delay (a time measurement) whose resolution is inverse of spanned bandwidth
 - Requires wideband feeds and receivers (VGOS 2-14 GHz)
 - Multi-band systems to correct for ionosphere delays
 - Low-noise receivers (low SEFD, antenna efficiency, cryogenics)
 - Antennas that are large, efficient, and fast (atmosphere)
 - High-speed recording for high SNR via large bandwidth (Nyquist)
 - Hydrogen maser frequency standards
 - Accurate time synchronization (to ~300 nsec with GPS time)
 - Instrumental calibrations (cable delays and phase calibration)

Legacy-VGOS comparison

	Legacy S/X	VGOS	
Antenna Size	5–100 m dish	~ 12 m dish	
Slew Speed	~20–200 deg/min	≥ 720 deg/min	
Sensitivity	200–15,000 SEFD	≤ 2,500 SEFD	
Frequency Range	S/X band	~2–14 GHz	
Recording Rate	128, 256 Mbps	8–16 Gbps	
Data Transfer	Usually ship disks, some e-transfer	Both e-transfer and disks	

ftp://ivscc.gsfc.nasa.gov/ pub/misc/V2C/TM-2009-214180.pdf

What data are recorded?

Answer: precisely timed samples of noise, usually nearly pure white, Gaussian noise!

- Interesting fact: normally, the voltage signal is sampled with only 1 or 2 bits/sample
 - Big consequence, it is near incompressible
 - But also another important consequence, it is not a big deal to lose a small amount of data

Waveform sampled at 2 bits/sample

- The spectrum of a Gaussian-statistics bandwidth-limited signal may be completely reconstructed by measuring only the sign of the voltage at each Nyquist sampling point (Van Vleck 1960)
- Relative to infinite bit sampling, VLBI SNR at 1 and 2 bits/sample is only 63% and 87%, respectively, better compensated by increasing recording bandwidth

Build an array from individual telescopes

- To summarize:
 - Incredibly faint noise sources are observed by systems that are 1000x noisier
 - Limited ability to expand the bandwidth (sampler/recorder limitations)
 - Short integration times (clock behavior, recorder limits, fast moving antennas in VLBI geodesy)

Correlator

 Multiplies and accumulates noisy signals from the individual telescopes to pull the signal from the noise, thus forming a large Earth-size array

Cross-correlation of weak signal

Correlation is product and accumulation

$$(s + n_1) (s + n_2) =$$

 $s^2 + n_1 s + n_2 s + n_1 n_2$

(Earth rotation adds complexity because causes time-of-arrival difference and Doppler shift to continually changes)

Correlators: two flavors of processors

Combine channels: "Bandwidth Synthesis"

The goal is to measure the group delay, defined as $d\theta/d\omega$

First, we must measure the observed fringe-phase difference for each of the observed frequency channels:

For a given delay, the higher the fringe frequency, the greater time-rate change in phase:

Multiband delay

The final result: FRINGES!!!

Observables for each baseline-scan:

- Correlation Amplitude
- Correlation Phase (generally 2π ambiguous)
- Total Group Delay
- Total Delay-Rate

• All tied to a precise UT epoch

High-precision Geodetic Science

Observation = Model + Error

 $\tau_{clk} + \tau_{ion} + \tau_{trop} + \tau_{inst} + \tau_{rel} + \tau_{other}$

Signal (geometry => position, orientation) rest is all "noise"

GNSS

DORIS

Living on a dynamic Earth

The ensemble of observables from an experiment are only useful if a detailed and highly sophisticated model of the Earth and its messy motions exists

Modeling the dynamic Earth

Adapted from Sovers et al., 1998

Item	Approx Max.	Time scale
Zero order geometry.	6000 km	1 day
Nutation	~ 20 "	< 18.6 yr
Precession	$\sim 0.5 \text{ arcmin/yr}$	years
Annual aberration.	20"	1 year
Retarded baseline.	20 m	1 day
Gravitational delay.	4 mas $@$ 90° from sun	1 year
Tectonic motion.	10 cm/yr	years
Solid Earth Tide	50 cm	12 hr
Pole Tide	2 cm	∼ 1 yr
Ocean Loading	$2 \mathrm{~cm}$	12 hr
Atmospheric Loading	2 cm	weeks
Post-glacial Rebound	several mm/yr	years
Polar motion	0.5 arcsec	~ 1.2 years
UT1 (Earth rotation)	Several mas	Various
Ionosphere	$\sim 2 \text{ m at } 2 \text{ GHz}$	All
Dry Troposphere	2.3 m at zenith	hours to days
Wet Troposphere	0-30 cm at zenith	All
Antenna structure	<10 m. 1cm thermal	
Parallactic angle	0.5 turn	hours
Station clocks	few microsec	hours
Source structure	5 cm	years

VGOS positioning precision assessment

UT1 estimates, VGOS vs. model

Terrestrial Reference Frames and EOP

And that's pretty much it for today

Have all a productive and a holly jolly TOW!

Thank you

