VLBI Basics

Pedro Elosequi
MIT Haystack Observatory

With big thanks to many of you, here and “out there”
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Some of the topics we will cover today

* Geodetic radio telescopes
* VLBI vs. GPS concept

* Station requirements

* VLBI digitization

* Correlation

* Geodetic post-processing, a dynamic planet
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VLBI Astrometry
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VLBI Global Observing System (VGOS)
Multi-technique core sites
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Space Navigation
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VLBI today



VGOS “today” s 5
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VGOS virtues (vs. “legacy”) in a nutshell
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Basic elements of VLBI (geodesy)

* Antennas

* Receivers

e Analog and digital stages

e Recorders and data transport
e Correlation, post-processing

* [maging, positioning, orientation
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VLBI (VGOS) station
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High-precision geodetic science

Observation = + Error
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Practical VLBI observational goals

High-precision geodesy means observable
with small uncertainty / !

B or  SNR Av
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 Sensitivity = ability to “see” faint objects (interferometer, Jy)

1 \/SEFDi " SEFD,

AS = —.
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» Resolution = ability to “see” details in distant objects
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What determines sensitivity?

« Amount of energy collected (Ta, gain, efficiency)
— Size and quality of the collecting area

— but cost of bigger antennas tends to increase as D*2.7
(i.e., doubling antenna diameter raises price by ~6!)

— Bandwidth of the energy spectrum

— sensitivity improves as square root of observed
bandwidth, cost effective

* Quietness of the receiving detectors (Tsys)

— many receivers are already approaching quantum noise
limits, or are dominated by atmospheric noise
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What determines resolution?
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A few resolution examples

100 m telescope at A=1cm (30 GHz)
— ~20 arcsec

VLA (=35 km) at A=1cm — ~0.1 arcsec
(~2 km on moon; ~2 m at 5000 km)

10,000 km telescope at A=1cm— ~200 micro-arcsec
(~40 cm on moon; ~5 mm at 5000 km)

10,000 km telescope at A=1Tmm — ~20 micro-arcsec
(~4 cm on moon; ~0.1 m at 1000 km)
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Principlg

(D/X

D/ N

two-element interferometer

Projected baseline =
D*cos O

Fringe-pattern spacing
on sky

« = M(projected baseline)

« = M\(D*cos 0)

AS source moves,
response changes as
cos (projection)
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Fringe pattern

Fringe spacing
N(D*cos 0)
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Interferometric response to point source

Source Size / Spacial Fringe

Point Source
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Extended radio source

Source Size / Spacial Fringe
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Extended radio

‘&"

source (one fringe width

1 /IN\/A\/

MIT
HAYSTACK
OBSERVATORY

1 2 3

Source Size / Spacial Fringe

3R 3aactal Finge

27



“Nice” (1300+580)

Geodetic VLBI radio sources

* VLBI geodesy requires sources that are
bright, compact, and “stable” both in time
and frequency; a challenge

« The total number of available useful
sources for current geodetic-VLBI
capabilities is small (<~1000)

« VGOS, with its improved sensitivity,
should significantly improve the number
of available sources
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Principle of (geodetic) VLBI

| * Measure time-of-
ouesst P arrival difference
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VLBI station requirements

* Observing “noise” from quasars (contaminated by various
noise sources)

* Measuring a (group) delay (a time measurement) whose
resolution is inverse of spanned bandwidth
* Requires wideband feeds and receivers (VGOS 2-14 GHz)
e Multi-band systems to correct for ionosphere delays
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VGOS broadband delay
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VLBI station requirements

* Observing “noise” from quasars (contaminated by various
noise sources)

* Measuring a (group) delay (a time measurement), whose
resolution is inversely of spanned bandwidth
* Requires wideband feeds and receivers (VGOS 2-14 GHz)
* Multi-band systems to correct for ionosphere delays
* Low-noise receivers (low SEFD, antenna efficiency, cryogenics)
* Antennas that are large, efficient, and fast (atmosphere)
* High-speed recording for high SNR via large bandwidth (Nyquist)

| HAYSTACK
OBSERVATORY



1971
16 Gbps L 4 MbpS

k5 .
720 kbps @ ® 1st mag disk

1st VLBI ™ 5006

2 Gbps
2010

224Mbps | - | 512 Mbps

# E




VLBI station requirements

* Observing “noise” from quasars (contaminated by various
noise sources)

* Measuring a (group) delay (a time measurement) whose
resolution is inverse of spanned bandwidth
* Requires wideband feeds and receivers (VGOS 2-14 GHz)
* Multi-band systems to correct for ionosphere delays
* Low-noise receivers (low SEFD, antenna efficiency, cryogenics)
* Antennas that are large, efficient, and fast (atmosphere)
* High-speed recording for high SNR via large bandwidth (Nyquist)
* Hydrogen maser frequency standards
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Stability of various frequency standards
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VLBI station requirements

* Observing “noise” from quasars (contaminated by various
noise sources)

* Measuring a (group) delay (a time measurement) whose
resolution is inverse of spanned bandwidth
* Requires wideband feeds and receivers (VGOS 2-14 GHz)
* Multi-band systems to correct for ionosphere delays
* Low-noise receivers (low SEFD, antenna efficiency, cryogenics)
* Antennas that are large, efficient, and fast (atmosphere)
* High-speed recording for high SNR via large bandwidth (Nyquist)
* Hydrogen maser frequency standards

Accurate time synchronization (to ~300 nsec with GPS time)
* Instrumental calibrations (cable delays and phase calibration)



Legacy-VGOS comparison

Legacy S/X

VGOS

Antenna Size

5—100 m dish

~ 12 m dish

Slew Speed ~20-200 deg/min = 720 deg/min
Sensitivity 200-15,000 SEFD < 2,500 SEFD
Frequency Range S/X band ~2—-14 GHz
Recording Rate 128, 256 Mbps 8—16 Gbps

Data Transfer

Usually ship disks,
some e-transfer

Both e-transfer and disks
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What data are recorded?

Answer: precisely timed samples of noise,
usually nearly pure white, Gaussian noise!

\'n, N‘-i'm' JIF#‘NH 'fhl#'J"ﬂ *|'n"nr5|.1"""4.4 Hi‘IulllLﬂll'fﬁﬁ'ﬁﬁ\.fh(-"lh’-? ,”M h,r|f'4.‘|‘Jﬁm|f“u‘i’aﬂp'f"\"'

* Interesting fact: normally, the voltage signal is sampled
with only 1 or 2 bits/sample

* Big consequence, it is near incompressible

* But also another important consequence, it is not a
big deal to lose a small amount of data



Waveform sampled at 2 bits/sample

+Threshold
0

-Threshold

« The spectrum of a Gaussian-statistics bandwidth-limited signal may
be completely reconstructed by measuring only the sign of the
voltage at each Nyquist sampling point (Van Vleck 1960)

* Relative to infinite bit sampling, VLBI SNR at 1 and 2 bits/sample is

only 63% and 87%, respectively, better compensated by increasing
recording bandwidth



Build an array from individual telescopes

e To summarize:

 |Incredibly faint noise sources are observed by
systems that are 1000x noisier

» Limited ability to expand the bandwidth
(sampler/recorder limitations)

» Short integration times (clock behavior, recorder
limits, fast moving antennas in VLBI geodesy)

Correlator

* Multiplies and accumulates noisy signals from the
individual telescopes to pull the signal from the noise,
thus forming a large Earth-size array



Cross-correlation of weak signal
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Correlation is product and
accumulation

(s+nq)(st+ny)=
s2+ NS + N,S + NqN,

(Earth rotation adds complexity because
causes time-of-arrival difference and oo . . .
Doppler shift to continually changes) R (e




Correlators: two flavors of processors

Amplitude
o Phase
Multiplication Delay
— Delay Rate
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FX: First Fourier Transform
Model

XF: First Correlation
Observation



CorrEIatOr Channel VGOS: 8 channels/band x 4 bands
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Combine channels: “Bandwidth Synthesis”

The goal is to measure the group delay, defined as do/dw

First, we must measure the observed fringe-phase
difference for each of the observed frequency channels:

For a given delay, the higher the fringe frequency, the
greater time-rate change in phase:

0 20 40 60 80 100 120
time delay
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Multiband delay
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The final result: FRINGESI!!!

Observables for each baseline-scan:

* Correlation Amplitude

« Correlation Phase (generally 211 ambiguous)
« Total Group Delay

« Total Delay-Rate

« All tied to a precise UT epoch




High-precision Geodetic Science

Observation = + Error
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Living on a dynamic Earth

planetary gravitational attraction luni-solar gravitational tides
D"

~Ag— The ensemble of

’

observables from an
experiment are only
useful if a detailed and

il highly sophisticated
ol model of the Earth and

Jiscous P its messy motions exists

B Jdd b \
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pressure melting of ice
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Modeling the
dynamic Earth

Adapted from Sovers et al., 1998

[tem Approx Max. Time scale
Zero order geometry. 6000 km 1 day
Nutation ~ 20" < 18.6 yr
Precession ~ 0.5 arcmin/yr years
Annual aberration. 20" 1 year
Retarded baseline. 20 m 1 day
Gravitational delay. 4 mas @ 90° from sun 1 year
Tectonic motion. 10 em /yr years
Solid Farth Tide 50 ecm 12 hr
Pole Tide 2 cm ~1 yr
Ocean Loading 2 cm 12 hr
Atmospheric Loading 2 cm weeks
Post-glacial Rebound several mm/yr years
Polar motion 0.5 arcsec| o~ 1.2 years
UT1 (Earth rotation) Several mas Various
Tonosphere ~ 2 m at 2 GHz All
Dry Troposphere 2.3 m at zenith | hours to days
Wet Troposphere 0 — 30 cm at zenith All
Antenna structure <10 m. lem thermal o
Parallactic angle 0.5 turn hours
Station clocks few microsec hours

Source structure

hHem

years




VGOS positioning precision assessment
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EOP: d(UT1 - UTC) (ms)

R

UT1 estimates, VGOS vs. model

Sub-diurnal ocean tide variations
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Terrestrial Reference Frames and EOP




And that’s pretty much it for today

Have all a productive and a holly jolly TOW!

Thank you
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