
VGOS Data Processing Manual

John Barrett Roger Cappallo Brian Corey Geoffrey Crew
Pedro Elosegui Arthur Niell Chester Ruszczyk

Mike Titus

MIT Haystack Observatory

Version 1.1

May 31, 2019

1

Contents
1 Introduction 5

2 Correlation 5
2.1 Data file preparation . 5
2.2 Vex file preparation . 6

2.2.1 Clock model generation and sampler delay adjustment 6
2.3 DiFX input conversion and running the correlation 7
2.4 Running difx2mark4 . 7

3 Fringe-fitting and Post-processing 8
3.1 Post-processing software installation . 8
3.2 Overview . 9
3.3 Initial control file . 12
3.4 Residual phase adjustment with ffres2pcp.py 12
3.5 Polarization phase/delay offset calibration

with fourphase.py . 16
3.6 Generating a pseudo-Stokes-I mode control file with

vgoscf_generate.py . 17
3.7 Configuration options of ffres2pcp.py, fourphase.py,

and vgoscf_generate.py . 18
3.8 Pseudo-Stokes-I polarization fringe-fitting . 20
3.9 Proxy cable calibration . 21

3.9.1 Running pcc_generate.py . 23
3.9.2 Running pcc_select.py . 25

4 Database creation and modification with vgosDbMake and vgosDbProcLogs 25

5 VGOS data processing checklist 27

6 Example control file 28

7 Appendix: VGOS correlator .v2d and .vex file setup examples 29

2

List of Figures
1 VGOS post-processing block diagram. The orange ellipses denote a program

or script, green boxes are configuration files, and the blue boxes are data files.
Dashed ellipses denote procedures which are currently not yet aided by auto-
mated scripting. 11

2 Example of the phase corrections for station E, X-polarization. The blue markers
represent the a priori (expected) phase correction as estimated from the last
session, while the red markers denote the newly computed phase corrections
generated from the current session (vt8218). The top axis shows the fourfit
channel labels, while the bottom displays the frequency in GHz. 14

3 Plot of minimum SNR vs. maximum dTEC deviation from the mean (taken over
all polarization products) for candidate scans on the GV baseline. The black
dots represent the scans which passed the preliminary cuts and were considered;
the blue stars indicate scans which were chosen to be included in the calculation
of the mean channel-by-channel phase corrections. The selected scans are picked
by attempting to maximize the minimum SNR found over the fringe solution of
all four polarization products, while minimizing the maximum deviation from
the mean of the dTEC solution among them. When there is one scan which
satisfies this criterion, it is selected first, and then removed from the set of scans
to consider. Then the best scan is found in the remaining scan set and so forth,
up to some limit (the default limit is 10 scans). In the case where there is no sin-
gle optimal scan, each scan is given a score 𝑆, and the scan with the maximum
score is selected. This score is given by 𝑆 = min(SNR)/mad(dTEC)+ 𝜂, where
the minimum min(SNR) and the maximum-absolute-deviation mad(dTEC) are
taken over the fringe solution of all four polarization products, and 𝜂 has been
empirically determined to be 0.1 TECU. It should be noted that this selection
method is used to limit the number of scans only when the option (averaging-
scan-limit) is active. If this option is disabled, all scans which pass the prelimi-
nary cuts on SNR and dTEC deviation will be used. 15

4 Histogram of the Y-X delay and phase offsets for station H, experiment #3659. 17
5 Channel-by-channel phase residuals for all scans with SNR > 30 on GE baseline

for session vt8204. Color-coded according to the baseline dTEC. 21
6 The band B, Y-polarization, multitone proxy delay fit data for station E, exper-

iment vt8218. 22
7 The summary plot for station E, displaying the mean delay of bands (BCD)

for both polarizations along with the individual delay trends for each band-
polarization, for experiment vt8218. 23

3

List of Tables
1 An example data statistics table1 for the channel-by-channel phase corrections

for station E, X-polarization of experiment #3659. This table lists (in degrees)
the a priori pc_phase, the difference (delta), resulting pc_phase, and estimated
error (taken to be the std. dev.) calculated for this session for each of the 32
channels. The channels are referenced according to the fourfit channel label
(e.g. a, b, ...F). 13

2 An example data statistics table (re-formatted) on station Y-X phase and delay
offsets extracted from fourphase.py report. For each station, the number of
scan-baselines (total, used, cut) when computing the Y-X phase/delay offsets is
shown in the first three columns, respectively, followed by the mean phase and
delay offset values and errors (estimated as the std. dev). 16

3 Description of available configuration options for control file generation scripts. 18

4

1 Introduction
The processing of VGOS experiment data brings several complications which are not normally
dealt with in legacy-S/X experiments. These difficulties primarily stem from the need to handle
the much larger bandwidth of the new stations and the dual-linear-polarization signal chain [3].
The intent of this document is to provide a general description of a process which transforms
raw station baseband data into data products which may be used for geodetic analysis. It
is not intended to be a completely authoritative guide covering all possible situations which
might be encountered during VGOS operations, but rather to serve as a framework on which
further developments may be based. Additional details describing a complete and operational
VGOS system can be found in Niell et al.[6].

2 Correlation
Once the stations have recorded a VGOS session, the first step in the data processing pipeline is
the correlation of the VLBI data. This correlation is done using the DiFX2 software correlator
[5]. Since general use and operation of the DiFX software has been documented extensively
elsewhere3, we will concentrate on details which are specific to correlating VGOS data. It
should be noted that the following instructions are intended to guide and augment the cor-
relation process when handling VGOS experiments. However, it is expected that individual
correlator sites may have their own specific set of procedures and conventions for running a
DiFX correlation that may be somewhat different than what is described here.

2.1 Data file preparation
For the purpose of this document we will assume the VGOS stations have provided data on
Mark-6 recording modules in the native scatter gather format. To make this data available to
the correlator, it must first be mounted on the Mark-6 playback units. To do this, first make
sure that the playback units are configured to run cplane on boot-up but that dplane has been
disabled. Then insert and key-on the station data modules while watching the disk activity
indicator LEDs to check that each disk is mounted. To ensure that the disks have been appro-
priately recognized by the host-bus-adapter cards, an mstat? query can be made in cplane.

da-client
Host: 127.0.0.1 port: 14242
>> mstat?1
<< !mstat?0:0:1:1:GSFC%041/48008/4/8:8:8:-:48008:unmounted:unprotected:sg;

The above output demonstrates that in this case all eight of the module disks have been
recognized (the number of discovered disks is indicated by the red arrow). Once it has been
confirmed that all disks of a module are present, they may be mounted from within da-client.
To mount the data of a station which provides data on a single module that has been inserted
into the first slot, open da-client and type: group=mount:<slot number>, as follows:
da-client
Host: 127.0.0.1 port: 14242
>> group=mount:1
<< !group=0:0:1;
>> mstat?1
<< !mstat?0:0:1:1:GSFC%041/48008/4/8:8:8:15476:48008:closed:unprotected:sg;

Proceed similarly for the rest of the station modules. Note multiple complete grouping of
modules can be mounted from different stations in the same Mark-6. For example, if a single
module was used for recording, a Mark-6 can have up to four stations mounted. For a station
which provides data on multiple modules, simply specify the slot where its modules reside
when issuing the mount command. For example, if the station modules reside in slots 3 and
4, one would use: group=mount:34.

2Version 2.5.2 or later is recommended.
3https://www.atnf.csiro.au/vlbi/dokuwiki/doku.php/difx/documentation

5

https://www.atnf.csiro.au/vlbi/dokuwiki/doku.php/difx/documentation

Once the data has been mounted, a file list for each station may be constructed using the
utility vsum, which is provided with the DiFX package. For example, to construct a list of all
files residing in slot #1 for station Gs, issue the following command.
stdbuf -o0 vsum -s --mark6slot 1 | tee ./gs_file.list

The file list can then be used in the .v2d file (needed in the next step) to specify the location
of the data to be correlated.

Stations which provide data via e-transfer must have the data buffered locally before use.
The exact format and procedure for this process depends heavily on the details of the individual
station and correlator and should be determined on a case-by-case basis. The correlator should
specify the expected format of the data for e-transfer by a particular site (which may depend on
whether the data is for a single fringe test or standard processing). Standard format requires
a station to convert data from multiple thread-IDs into a single thread-ID containing all four
bands and both polarizations. For fringe tests, stations are expected to format their data into
four files, with each file containing a single thread-ID (frequency band).

2.2 Vex file preparation
In order to process VGOS experiments using the DiFX correlator, the operator must prepare
a correlator-specific .vex file describing the session and convert this .vex file to DiFX’s native
input format using the vex2difx utility.

An initial .vex file associated with the VGOS session to be correlated may be obtained from
the VGOS master schedule on the IVS website4. However, the .vex files available on the IVS
website are incomplete and are primarily used to provide the scan scheduling information for the
observing stations. They do not yet contain valid information on the station frequency setup
($FREQ), intermediate frequency ($IF), baseband converter ($BBC), or tracks ($TRACKS)
sections needed for correlation. These sections must be completed and added by the correlator
operator.

Information to construct the $IF, $BBC, and $FREQ sections of the correlator .vex file are
described in a memo on VGOS frequency band and channel configuration [7]. The nominal
VGOS $IF, $BBC, and $FREQ, configurations are shown in the appendix in listings 7, 9,
and 10, respectively. It should be noted that care should be taken to procure the frequency
setup information directly from each station joining the VGOS network to ensure that it is
compatible with the standard VGOS settings, as not all stations have similar front-end or back-
end equipment. The $TRACKS section should also be replaced by the correlator operator.
For the time being all that is needed for this section is a simple place holder declaring use
of the VDIF format, as shown in listing 8. The $TRACKS section of the .vex file will later
be overridden by the precise format specified for each station in the vex2difx configuration
(.v2d) file as shown in listing 6.

2.2.1 Clock model generation and sampler delay adjustment

Prior to the generation of the correlator input files using vex2difx, the correlator operator must
also set up the Earth orientation parameters ($EOP) and station clock ($CLOCK) sections of
the .vex file.

The earth rotation and orientation parameters $EOP section should be filled in according
to the description in the vex 1.5b1 standard5. Data to fill in this section can be obtained via
the IERS rapid service6. At least five days of data should be specified about the date of the
VGOS session to provide an adequate range for interpolation. An example of the $EOP section
to be appended to the vex file is given in listing 5.

The setup of the .vex file $CLOCK section is somewhat more complicated because of the
four separate frequency bands used in VGOS. Since these four bands may be down-converted

4https://ivscc.gsfc.nasa.gov/sessions/vgos/2018/
5https://vlbi.org/vex/docs/vex%20parameter%20tables%2015b1.pdf
6http://maia.usno.navy.mil/

6

https://ivscc.gsfc.nasa.gov/sessions/vgos/2018/
https://vlbi.org/vex/docs/vex%20parameter%20tables%2015b1.pdf
http://maia.usno.navy.mil/

through different signal paths and digitized by separate samplers, but must be fringe fit to-
gether, care must be taken when setting the station clocks. An extensive discussion of this
procedure can be found in [4], and further details will be available in future revisions of this
document.

2.3 DiFX input conversion and running the correlation
Before running the DiFX correlation, the experiment .vex file must be converted into something
DiFX understands using the utility vex2difx. This program also requires a configuration (.v2d)
file which is needed to specify additional parameters needed for the correlation. Normally for
VGOS sessions, the .v2d setup section should specify the number of spectral channels to be
128, and the integration period as 1 second as shown below. Historically, the choice of 128
spectral channels has been motivated by the sometimes large sampler delays at individual
stations, which reduces the SNR if the number of lags (i.e., the size of the Fourier transform)
is not increased to compensate. It is expected that this value maybe relaxed in the future for
more efficient correlation.
SETUP default
{
nChan = 128
tInt=1

}

An example .v2d file for a simple correlation done directly on a Mark-6 is shown in listing
6. Correlator operators should adjust the header section to specify the machines, threads, etc.
which match their local environment. In addition to local setup, the correlator operator should
also take care to fill in the ANTENNA section appropriately, indicating the data location, file-
list, sampling type, and phase-calibration frequency interval (5 MHz in VGOS). For stations
which are operated with RDBE-G back-ends, the sampling is complex with four threads, and
the format must be specified using the VDIFC format tag. However, the format specified
for each station in the .v2d file will depend on how the data were delivered by the station
and should be dealt with on a case-by-case basis. For stations which have e-transfered files
that have been gathered from multiple threads, or do not use RDBE-G back-ends and have
recorded with real (rather than complex) sampling, the format specifier must necessarily be
adjusted accordingly. Consult the station operator and/or the DiFX wiki entry on vex2difx7

to determine the proper format specifier if it is unknown.
After vex2difx has been run to generate the DiFX input files the correlation can be started

with the script startdifx with the appropriate options. For example, to run with a pre-
constructed machines file and force the generation of output even if it already exists, one
would run:
startdifx -f -M <machines file> <input file>

2.4 Running difx2mark4
Once the correlation is complete, the session should be converted to the Mk4 data format in
preparation for post-processing with HOPS using the utility difx2mark4. This can be done
from the directory containing the DiFX setup and Swinburne files (*.vex, *.im, *.input, *.difx/)
following the instructions on the DiFX wiki 8. The user should specify the four-digit experiment
number to be associated with this session at the time of conversion and also indicate a station
code file to map the two-character station codes to the single character Mk4 IDs. Since all
four frequency bands are to be fringe fit together, they should be merged using the ‘-b’ option
to specify that the ‘X’ band covers the entire VGOS frequency range of 2.3 to 14 GHz. An
example usage of difx2mark4 is given below:
difx2mark4 -v -d -b X 2300 14000 -e <4-digit experiment code> -s <station code file>

7https://www.atnf.csiro.au/vlbi/dokuwiki/doku.php/difx/vex2difx
8https://www.atnf.csiro.au/vlbi/dokuwiki/doku.php/difx/difx2mark4

7

https://www.atnf.csiro.au/vlbi/dokuwiki/doku.php/difx/vex2difx
https://www.atnf.csiro.au/vlbi/dokuwiki/doku.php/difx/difx2mark4

The current VGOS station identification file contains the following mapping for stations which
have so far participated in VGOS experiments: GGAO (Gs), Kokee 12m (K2), Westford (Wf),
Wettzell (Ws), Ishioka (Is), Yebes (Yj), Onsala-northeast (Oe), and Onsala-southwest (Ow).
G Gs
H K2
E Wf
V Ws
I Is
Y Yj
S Oe
T Ow

3 Fringe-fitting and Post-processing
After the correlation is complete, accurate estimates of the multi-band delay and delay-rate
residuals must be made from the visibility data for input into the geodetic database. The
process of determining these residuals is collectively known as fringe-fitting, and for VGOS
data this is performed by the program fourfit, which is distributed with the software pack-
age HOPS. Additional utilities are also provided within HOPS which assist in constructing a
fourfit control file to guide the fringe-fitting process.

3.1 Post-processing software installation
The post-processing software requires a computer with a Linux operating system with at least
4GB of RAM. Debian Stretch (9.7) is recommended, as the following procedure has been
tested with a fresh installation of this distribution. While it is expected that other Linux/Unix
distributions may also be satisfactory, they have not been extensively tested and instructions
contained herein may need to be modified accordingly9. On Debian-9.7, the basic software
dependencies required to build and verify the installation of HOPS can easily be installed via
the package manager with the following commands.
sudo apt-get update
sudo apt-get install build-essential bc rsync pkg-config gfortran libfftw3-dev
sudo apt-get install ghostscript ghostscript-x libx11-dev

The dependencies of the VGOS-specific Python packages and scripts that are bundled with
HOPS may be installed by issuing:
sudo apt-get install python-future python-matplotlib python-numpy python-scipy python-progress

The package python-progress is optional.
An additional requirement of HOPS is the program PGPlot (v5.2). This must be built

and installed from source with a shared library made available. To retrieve the source code
and install PGPlot to the canonical installation directory (/usr/local/pgplot), enter the
following as the root user:
cd /usr/local/src/
wget ftp://ftp.astro.caltech.edu/pub/pgplot/pgplot5.2.tar.gz
tar -xzf ./pgplot5.2.tar.gz
mkdir /usr/local/pgplot
cd /usr/local/pgplot/
cp /usr/local/src/pgplot/drivers.list ./

Then edit the file drivers.list to indicate which device drivers you wish to build. At a
minimum the resulting drivers.list file should contain the following (uncommented) lines,
indicating that the PostScript and X-window drivers be built.
PSDRIV 1 /PS PostScript printers, monochrome, landscape Std F77
PSDRIV 2 /VPS Postscript printers, monochrome, portrait Std F77
PSDRIV 3 /CPS PostScript printers, color, landscape Std F77
PSDRIV 4 /VCPS PostScript printers, color, portrait Std F77
XWDRIV 2 /XSERVE Persistent window on X Window System C

9For example, on Ubuntu 18.04, the default compiler gcc 7.3 produces broken shared libraries, and the default
system installation of python is python3. To work around these differences on Ubuntu 18.04, install the clang
compiler with apt-get install clang, and install the associated python pre-requisites using their python3-*
equivalents. Then before the HOPS configure step, run export CC=clang && export PYTHON=python3.

8

Once this is done, generate the PGPlot make-file by running the following commands:
/usr/local/src/pgplot/makemake /usr/local/src/pgplot linux g77_gcc
sed -i -e 's/FCOMPL=g77/FCOMPL=gfortran/g' ./makefile

Next, build and install PGPlot and its associated libraries by executing:
make
make cpg
make clean

Finally, set the following environmental variables:
export PGPLOT_DIR=/usr/local/pgplot
export PGPLOT_DEV=/XSERVE
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/pgplot

If you wish to make these variables persistent across login sessions, add the above lines to the
.bashrc script in your home directory.

Once the system prerequisites are satisfied, the HOPS software can be unpacked and in-
stalled as a normal user. To do this, decompress the file hops-3.20-alpha.tar.gz, create a
build directory, and configure with the options specified below10.
tar -xzf ./hops-3.20-vgos.tar.gz
mkdir build
cd build
../hops-3.20/configure --enable-hopes --prefix=<path/to/install/location>

Then run make and make install:
make
make install

To run a set of internal tests to verify that the installation was successful, run the following
(from within the build directory):
export RUNCHOPSCHECK=1
make check

If the check passes, then the HOPS software has been compiled successfully. Finally, to use
the HOPS software, set the appropriate environmental variables and place the HOPS binaries
in your path by running the HOPS setup script with the following:
source <path/to/install/location>/bin/hops.bash

There should be no alternate HOPS installation already in your path prior to
running this setup script. Once this is complete, you are ready to work with fourfit and
the associated VGOS post-processing Python utilities.

3.2 Overview
The program fourfit transforms the visibility data into delay vs. delay rate space in order
to search for the fringe peak; it can also simultaneously fit for the ionosphere differential
total electron content (dTEC) and is responsible for applying the station multi-tone phase-
calibration data to correct the raw visibility phases. fourfit accepts a control file which
provides the user with an extensive number of configuration options that can be used to
guide the fringe fitting. Since the process of constructing a control file that can appropriately
direct fourfit to maximize the SNR on each baseline and minimize the error on the multi-
band delay can be somewhat complicated (given the number of parameters involved), several
auxiliary programs have been developed to aid in the configuration of the control file. In
general, creating a well-calibrated fourfit control file is an iterative process which requires
several steps before the final fringe fitting and database generation can be done.

The post-processing procedure can be broken down into the following steps:

1. Construct an initial fourfit control file using a priori data (e.g. the last experiment’s
control file).

10If you do not specify an installation prefix, then a default installation directory will be created at the same
level as the build folder. However, the name of this directory will be system architecture dependent.

9

2. Generate a pseudo-Stokes-I fringe fitting fourfit control file:

(a) Estimate the characteristic channel-by-channel phase offsets at each station with
respect to the network reference station (typically Gs).

(b) Estimate the phase and delay offsets between the X and Y polarizations at each
station.

3. Perform session wide pseudo-Stokes-I fringe fitting and examine data quality.

4. Generate the proxy cable calibration files for stations which lack a dedicated cable de-
lay measurement system and select appropriate bands/polarizations for inclusion in the
vgosDb file.

5. Generate the VGOS database using vgosDBMake and append cable calibration correc-
tions using vgosDbProcLogs.

The relation between these steps and the overall process is broadly summarized in the block
diagram in figure 1.

To streamline the procedure of generating a control file for use in production pseudo-Stokes-I
fringe fitting, several programs have been developed. These are ffres2pcp.py, fourphase.py,
and vgoscf_generate.py. These auxiliary programs will be distributed with HOPS. However,
they have not yet been incorporated into the standard release (currently HOPS v3.19) that is
distributed with DiFX. Further information regarding the software release is forthcoming.

In typical operation, the input to this collection of programs is a complete session’s worth of
correlated data in Mk4 type-1 (corel) format along with an initial (a priori) fourfit control file.
The program ffres2pcp.py is responsible for calculating the appropriate phase adjustments
needed for individual channels, while fourphase.py is used to align the phases and delays be-
tween the two linear-polarization signal chains. The program vgoscf_generate.py is provided
for convenience so that these two processes may be run together sequentially and is the nor-
mal means by which the user should generate a pseudo-Stoke-I mode control file for fourfit.
By and large, vgoscf_generate.py completely automates the yellow (Post-Correlation) box
shown in 1.

The final output of this process is a vgosDb with ionosphere-corrected and cable-delay
corrected data.

10

correlatorstation data
vdif files clock model

Mk4 file set:
type-1 and type-3

files

fourfit

1st pass fringe fit:
4 pols., only baselines to

reference station
type-2 files

initial control file

sampler
delay

adjustment

channel phase
offset correction

2nd pass control filefourfit

2nd pass fringe fit:
4 pols. on all baselines

type-2 files

Y-X polarization
delay/phase offset

compensation

fourfit
3rd pass control file

for pseudo-Stokes-I fitting

final fringe fit:
pseudo-Stokes-I
on all baselines

type-2 files

proxy cable-cal
delay fitting

band
delay
files

band
select
and

average

proxy cable-cal
pcmt.dat files

vgosDbMake

vgosDb
v1

vgosDbCalc

vgosDb
v2

vgosDbProcLogs

Station
logs

vgosDb
v3

vgosDbProcLogs

vgosDb
v4

Correlation

Cable Delay
Calibration

Post-Correlation

Database
Generation

Figure 1: VGOS post-processing block diagram. The orange ellipses denote a program or
script, green boxes are configuration files, and the blue boxes are data files. Dashed ellipses
denote procedures which are currently not yet aided by automated scripting.

11

3.3 Initial control file
The initial control file should be provided as a best-guess estimate of the current state of
the stations in the VGOS network. Ideally, it should provide estimates of the channel-by-
channel phase offsets for each station, although this is not completely necessary, as these can
be computed from the session data. However, at a minimum it should contain the basic VGOS
fourfit configuration and station sampler delays; a complete example is given in the appendix,
listing 4.

In general operation, when there have been no major hardware changes to any of the stations
in the network, or no new stations joining the network, it is normally acceptable to reuse the
production pseudo-Stokes-I control file from the most recent session as the a priori control file
for the current session. Usually, the sampler delays at each station are fairly stable unless
hardware changes have been made, so the sampler-delay adjustment procedure as described in
[4] is not normally required. However if there has been any noticeable change, the sampler-
delays will need to be corrected while constructing the clock model during the correlation step
before proceeding.

When reusing the last session’s control file, it is generally good practice to hand-edit the
file in order to clean it up by stripping out old comments and removing any lines containing
pc_delay_offset_x/y or pc_phase_offset_x/y. This is not strictly necessary when
using the control file generation script vgoscf_generate.py, as it will comment out extraneous
lines, but it helps to prevent the control files from becoming too cluttered.

3.4 Residual phase adjustment with ffres2pcp.py

To align the phases across all bands in preparation for combined polarization fourfit-ing, the
characteristic phase residuals need to be removed across all channels for each station. This
step is important because the non-linear phase structure in the response of the signal chain
at each station (which remains uncorrected by the phase-calibration system) degrades the
quality of the fringe-fit. This is because the phase model used by fourfit expects behavior
which is linear in delay and delay rate, along with a single dTEC term which is inversely
proportional to frequency. Any residual phase structure which cannot be compensated by this
model not only reduces the fringe amplitude (and corresponding SNR) of whatever solution
is found, but can also cause the appearance of multiple competing peaks within the (delay,
delay-rate, dTEC) search space. When competing solutions have similar fringe amplitudes,
random noise can push the fitting algorithm toward a particular solution in an arbitrary way
and makes consistent determination of the dTEC more difficult from scan to scan, increasing
the scatter in the multi-band delay measurements. Although the long-term behavior of these
phase non-linearities demonstrates that they are relatively stable (changes are usually < 20∘)
over months-to-year-long time frames, the phase corrections should be re-calculated on a per-
session basis to optimize SNR and to monitor station health.

Since absolute phase calibration isn’t necessary, we choose a single station to serve as a
phase reference for the other stations in the network. We will refer to this station as the
network reference station. The choice is somewhat ad-hoc but is best served by a station
which has a fairly flat bandpass and is also present in as many scans a possible. For this
purpose, the X polarization feed at Goddard (GGAO) has been used as the network reference
station for the VGOS network so far.

The determination of the residual phase adjustments for each channel is ideally done using
many scans which have high SNR fringes on all four polarization products (𝑋𝑋,𝑌 𝑌,𝑋𝑌, 𝑌 𝑋).
Moreover, it is also important that the dTEC solution for each polarization product differs
very little (< 1.0 TEC unit) from the mean dTEC. The process of calculating these phase
adjustments is done using a script called ffres2pcp.py. This script is responsible for run-
ning fourfit where required, loading the resulting fringe files, locating optimal scans, and
computing the mean phase residual corrections to be applied. The input to this script is the
experiment Mk4 type-1 (corel) files and an initial (a priori) control file. The output of this
script is a new control file which specifies the phase corrections (indicated by the keyword

12

pc_phases_x/y in the fourfit control file) to be applied to each channel at each station.
Running ffres2pcp.py is fairly straightforward and has only four required arguments.

These are the initial control file to be used, the single-character Mk4 station code for the
network reference station, a concatenated list of the remaining non-reference stations, and the
path to the directory containing the Mk4 type-1 (corel) files to be processed. For example, the
command shown below:
ffres2pcp.py ./cf_3659_firstpass G HEVI ./3659/

will run the ffres2pcp.py procedure for experiment 3659 using station G (X-polarization) as
the network reference station, and the file cf_3659_firstpass as the initial control file. It will
output a new control file (in this case, by default named cf_3659_GEHIV_pcphases) which will
consist of the initial control appended with appropriate phase correction lines for the X and
Y polarizations of stations E, H, I, V, as well as the Y polarization of station G. Currently,
regardless of which station is specified as the network reference station, the X polarization of
this station will be used as the phase reference. It should be noted that this is an arbitrary
restriction which may be lifted in the future if needed.

There are several optional arguments which may be specified to modify the default behavior
of ffres2pcp.py. Information on the optional arguments can be obtained at any time by
calling ffres2pcp.py -h at the command line which displays the usage information. Further
discussion of the configuration options can be found in section 3.7.

In order to keep track of the scans which were selected to be included in the mean phase
corrections and to record how the phase corrections were calculated, this script also pro-
duces a report file in .json11 format. This report file can be processed using the script
summarize_report.py to generate a simple text summary and several plots to inform the
user. The text summary consists of a table listing the a priori phase corrections, the new
phase corrections, and the estimated error (standard deviation) of the phase corrections for
each station and polarization. As an example, table 1 displays a portion of the data statistics
for the X-polarization of station E from experiment #3659.

channel a b c d e f g h · · · y z A B C D E F
a priori pc_phase -4.4 -2.1 -0.1 -6.4 -1.7 10.1 17.6 19.5 · · · 18.8 13.3 12.1 5.1 6.2 7.2 13 14.6
delta pc_phase -1.7 -0.3 1.5 -1.4 -0.2 -0.4 -0.6 1.7 · · · 1.3 -2.7 -2.7 -0.9 4.2 -1.6 0.6 4
result pc_phase -6.1 -2.4 1.4 -7.8 -1.9 9.7 17 21.2 · · · 20.1 10.6 9.4 4.2 10.4 5.6 13.6 18.6

error 1.9 3 1.9 1.7 2.6 2.4 2.5 3.6 · · · 2.7 3.1 4.6 4.2 6.3 2.9 3.5 3.8

Table 1: An example data statistics table12 for the channel-by-channel phase corrections
for station E, X-polarization of experiment #3659. This table lists (in degrees) the a priori
pc_phase, the difference (delta), resulting pc_phase, and estimated error (taken to be the
std. dev.) calculated for this session for each of the 32 channels. The channels are referenced
according to the fourfit channel label (e.g. a, b, ...F).

In addition, two types of plots will be generated for each station and polarization. These are
a graphical display of the phase corrections as shown in figure 2, and a scatter plot of selected
scans. The scatter plot displays the location (minimum SNR, maximum dTEC deviation) of
each scan considered or chosen for inclusion in the calculation of the mean phase corrections.
Those scans which were considered (remaining after the rough initial cuts) are shown as black
dots, while those which were actually included in the mean are indicated by blue stars, as
shown in figure 3.

11JavaScript object notation.
12Re-formatted from original to fit this page.

13

Figure 2: Example of the phase corrections for station E, X-polarization. The blue markers
represent the a priori (expected) phase correction as estimated from the last session, while
the red markers denote the newly computed phase corrections generated from the current
session (vt8218). The top axis shows the fourfit channel labels, while the bottom displays
the frequency in GHz.

14

Figure 3: Plot of minimum SNR vs. maximum dTEC deviation from the mean (taken over
all polarization products) for candidate scans on the GV baseline. The black dots represent
the scans which passed the preliminary cuts and were considered; the blue stars indicate scans
which were chosen to be included in the calculation of the mean channel-by-channel phase
corrections. The selected scans are picked by attempting to maximize the minimum SNR
found over the fringe solution of all four polarization products, while minimizing the maximum
deviation from the mean of the dTEC solution among them. When there is one scan which
satisfies this criterion, it is selected first, and then removed from the set of scans to consider.
Then the best scan is found in the remaining scan set and so forth, up to some limit (the
default limit is 10 scans). In the case where there is no single optimal scan, each scan is
given a score 𝑆, and the scan with the maximum score is selected. This score is given by
𝑆 = min(SNR)/mad(dTEC)+ 𝜂, where the minimum min(SNR) and the maximum-absolute-
deviation mad(dTEC) are taken over the fringe solution of all four polarization products, and
𝜂 has been empirically determined to be 0.1 TECU. It should be noted that this selection
method is used to limit the number of scans only when the option (averaging-scan-limit) is
active. If this option is disabled, all scans which pass the preliminary cuts on SNR and dTEC
deviation will be used.

15

3.5 Polarization phase/delay offset calibration
with fourphase.py

Before pseudo-Stokes-I mode fringe fitting can be performed, the phase and delay offsets be-
tween the X and Y polarizations must also be determined. This is necessary in order to
coherently add the visibilities and maximize the SNR in the resulting combined fringe. These
offsets can only be determined after the channel-by-channel phases adjustments have been
made because of the difficulties an un-corrected station bandpass can cause when fitting the
dTEC.

The script fourphase.py is used to compute the overall delay and phase offsets between the
X and Y polarizations of each station. This script takes the same arguments as ffres2pcp.py,
with the exception that the control file to be used should be the control file which is the results
of running ffres2pcp.py. It is called as in the following example:
fourphase.py ./cf_3659_pcphases G HEVI ./3659/

which will run the phase/delay offset extraction for the stations G, H, E, V, and I for experiment
#3659 using the control generated by ffres2pcp.py. This script also supports several options
which are described in section 3.7. A .json report file is also produced by fourphase.py which
can be processed with summarize_report.py to provide the user with feedback on how the
calculation was performed. The text output produced from the .json file consists of a summary
of the configuration used to run fourphase.py as well as a brief table of the data statistics,
an example of which is shown in table 2.

station
N

total
N

used
N
cut

mean
delay (ns)

delay
error (ns)

median
delay(ns)

median abs
deviation (ns)

mean
phase (deg)

phase
error (deg)

I 146 137 9 -0.064 0.003 -0.064 0.003 41.203 5.32
H 168 161 7 0.143 0.003 0.143 0.003 -50.661 4.287
E 194 179 15 0.722 0.003 0.722 0.003 117.547 6.091
G 120 111 9 1.681 0.003 1.681 0.002 30.962 3.857
V 196 177 19 -0.059 0.002 -0.059 0.002 -132.253 4.955

Table 2: An example data statistics table (re-formatted) on station Y-X phase and delay offsets
extracted from fourphase.py report. For each station, the number of scan-baselines (total,
used, cut) when computing the Y-X phase/delay offsets is shown in the first three columns,
respectively, followed by the mean phase and delay offset values and errors (estimated as the
std. dev).

In addition to the data statistics table, a histogram of the calculated Y-X phase and delay
offset corrections for each station will be created as shown in figure 4. Also indicated on these
histograms are a Gaussian fit, the resulting mean value, and the mean value calculated as if
no outlier values were cut.

16

Figure 4: Histogram of the Y-X delay and phase offsets for station H, experiment #3659.

3.6 Generating a pseudo-Stokes-I mode control file with
vgoscf_generate.py

In the course of processing a normal VGOS experiment, the script ffres2pcp.py and the script
fourphase.py are not typically run individually. Instead they are run in combination though
the convenience script vgoscf_generate.py. This script takes the options and arguments
described in section 3.7, with the usage description displayed by the –help option shown
in listing 1. The output is the final control file suitable for pseudo-Stokes-I fringe fitting.
During the course of executing this script, two .json report files will be generated, one for
the ffres2pcp process and another for the fourphase.py process. These report files may be
individually digested by the script summarize_report.py to produce summary reports and
plots to inform the user as described previously. Note that the default behavior of these scripts
is to place the generated control files (and fringe-files) underneath a scratch folder13 within the
current experiment directory. Once the desired control file has been copied out of the scratch
directory, the entire directory may be removed. This is done in order simplify the removal of
extraneous fringe files from the experiment directory, as the intermediate fringe files created
during this process should not be incorporated into the experiment database. However, if the
user desires, this default behavior can be disabled such that the control files and intermediate

13Each time one of these scripts is run a new directory will be created under the scratch folder, where the
results will be placed. The name of this directory is generated based on the current time in order to avoid
reuse.

17

option short hand parameter type Description
--num-proc -n integer Maximum number of concurrent

fourfit processes to run
--snr-min -s float Minimal allowable SNR for any

selected scan-baseline
--quality-limit -q integer Minimal allowable quality code for

any selected scan-baseline
--dtec-threshold -d float Maximum allowable difference

between dTEC solutions for
different polarization products on
the same scan-baseline

--begin-scan -b DDD-HHMM Limit scans under consideration to
be after this scan (specified by
day-of-year, hour and minute)

--end-scan -e DDD-HHMM Limit scans under consideration to
be before this scan (specified by
day-of-year, hour and minute)

--cut-sigma-factor -c float Cut phase/delay residual values
which are more than a multiple of
the standard deviation from the
mean

--without-scratch -w N/A Allow fourfit processes to create
files directly in the experiment
directory instead of a scratch
folder

--progress -p N/A Monitor progress with simple
command line display

--output-filename -o string Override the default name for the
generated control file

--averaging-scan-limit -a integer Limit the number of scans used
when computing the mean
phase/delay corrections

--toggle-run-info -t N/A Disable the addition of information
about how this program was called
to the control file

Table 3: Description of available configuration options for control file generation scripts.

fringe files will be place within the current experiment directory.

3.7 Configuration options of ffres2pcp.py, fourphase.py,
and vgoscf_generate.py

Collectively, the programs ffres2pcp.py, fourphase.py, and vgoscf_generate.py all take
the same arguments and options. The required arguments are the control file to be modified,
the network reference station code, a list of the other non-reference stations, and the experiment
data directory containing the Mk4 type-1 (corel) and/or type-2 (fringe) files. The additional
options are described in table 3.

18

Listing 1: Arguments and options of the script vgoscf_generate.py
usage: vgoscf_generate.py [-h] [-v VERBOSITY] [-n NUM_PROC] [-s SNR_MIN]

[-q QUALITY_LOWER_LIMIT] [-d DTEC_THRESH]
[-b BEGIN_SCAN_LIMIT] [-e END_SCAN_LIMIT]
[-c SIGMA_CUT_FACTOR] [-w] [-p] [-o OUTPUT_FILENAME]
[-a AVERAGING_SCAN_LIMIT] [-t]
control_file network_reference_station stations
data_directory

utility for constructing a control file suitable for pseudo-Stokes-I fringe
fitting of VGOS sessions

positional arguments:
control_file the control file to be applied to all scans
network_reference_station

single character code of station used as network
reference

stations concatenated string of single codes of non-network-
reference stations of interest

data_directory relative path to directory containing experiment or
scan data

optional arguments:
-h, --help show this help message and exit
-v VERBOSITY, --verbosity VERBOSITY

verbosity level: 0 (least verbose) to 3 (most
verbose), default=2.

-n NUM_PROC, --num-proc NUM_PROC
number of concurrent fourfit jobs to run, default=1

-s SNR_MIN, --snr-min SNR_MIN
set minimum allowed snr threshold, default=30.

-q QUALITY_LOWER_LIMIT, --quality-limit QUALITY_LOWER_LIMIT
set the lower limit on fringe quality (inclusive),
default=6.

-d DTEC_THRESH, --dtec-threshold DTEC_THRESH
set maximum allowed difference in dTEC, default=1.0

-b BEGIN_SCAN_LIMIT, --begin-scan BEGIN_SCAN_LIMIT
limit the earliest scan to be used in the calibration,
e.g. 244-1719

-e END_SCAN_LIMIT, --end-scan END_SCAN_LIMIT
limit the latest scan to be used in the calibration,
e.g. 244-2345

-c SIGMA_CUT_FACTOR, --cut-sigma-factor SIGMA_CUT_FACTOR
cut phase/delay values which are more than
cut_factor*sigma away from the mean value, default=3.0
(use 0.0 to disable).

-w, --without-scratch
disable use of scratch directory and work directly in
experiment directory

-p, --progress monitor process with progress indicator
-o OUTPUT_FILENAME, --output-filename OUTPUT_FILENAME

specify the name of the generated control file
-a AVERAGING_SCAN_LIMIT, --averaging-scan-limit AVERAGING_SCAN_LIMIT

limit the number of scans used in averaging, use 0 to
disable, default=10

-t, --toggle-run-info
do not append control file with information about how
this program was called

19

3.8 Pseudo-Stokes-I polarization fringe-fitting
Once a control file suitable for pseudo-Stokes-I mode fringe fitting has been generated, the
entire experiment directory may be fringe-fit using the utility batch_fourfit.py. This script
is a simple wrapper around fourfit which allows several processes to run simultaneously in
order to expedite processing. It provides a modicum of parallelization by simply spawning
several processes at once until all scans and baselines have been fringe fit. However, it is
restricted to run on a single computer and can therefore provide only a small speed-up factor
limited by the number of CPU cores and memory of the workstation.

By default, this script will fringe fit every scan within the directory specified, for every
baseline possible given the list of stations (except for auto-correlations unless otherwise indi-
cated). The behavior of this script can be modified following the usage options which are given
below.
usage: batch_fourfit.py [-h] [-n NUM_PROC] [-b BEGIN_SCAN_LIMIT]

[-e END_SCAN_LIMIT] [-a] [-d] [-p]
control_file stations pol_products
experiment_directory

simple utility for running fourfit over multiple scans with the same control
file

positional arguments:
control_file the control file to be applied to all scans
stations concatenated string of single character codes for all

stations to be fringe fit
pol_products comma separated list of polarization-products to be

fringe fit
experiment_directory relative path to directory containing experiment data

optional arguments:
-h, --help show this help message and exit
-n NUM_PROC, --num-proc NUM_PROC

number of concurrent fourfit jobs to run, default=1
-b BEGIN_SCAN_LIMIT, --begin-scan BEGIN_SCAN_LIMIT

limit the earliest scan to be used e.g 244-1719
-e END_SCAN_LIMIT, --end-scan END_SCAN_LIMIT

limit the latest scan to be used, e.g. 244-2345
-a, --auto-corrs enable auto-correlations
-d, --disable-cf-caching

disable type_222 control file record caching in fringe
files (caching is on by default).

-p, --progress monitor process with progress indicator

After pseudo-Stoke-I mode fringe fitting is completed, some sense of the raw data quality
can be obtained through the use of the utility phase_resid.py. This program plots the channel
phase residuals (with respect to the overall fringe phase) as a function of time for all baselines
and scans in the experiment. An example plot of the channel-by-channel fringe phases (in this
case, colored by the dTEC solution) is shown in figure 5. While the quantity of information
in the plots generated by phase_resid.py can be quite large (nominally 32 plots per baseline
for pseudo-Stoke-I mode alone), in some cases problems (which can otherwise be somewhat
difficult to appreciate in individual fourfit plots) can be spotted quite easily by sharp jumps or
splits in the phase residuals of one or more channels.

20

Figure 5: Channel-by-channel phase residuals for all scans with SNR > 30 on GE baseline for
session vt8204. Color-coded according to the baseline dTEC.

3.9 Proxy cable calibration
Before the geodetic database is created, any available (non-station-log-file) cable calibration
data should be collected first. For stations which do not have a dedicated cable delay mea-
surement system (CDMS), a stop-gap proxy cable calibration method has been developed to
provide an estimated cable delay correction. This method relies on the injected phase calibra-

21

tion tones to extract delays for the signal chain of each band. Individually, the proxy-cable
delays as calculated by this method for each band contain the contribution of the reference
clock uplink-cable delay (which we would like to measure) in addition to the delay due to
the signal chain between the phase-calibration injection point and each individual sampler.
Therefore, an average of the individual band delays is taken on a per-scan basis to provide
an estimate of the antenna-orientation-dependent delay variation of the uplink-cable supplying
the reference signal to the phase calibration generator.

To process the phase calibration data available in the station data (Mk4 type-3) files and
calculate the proxy cable delays, the script pcc_generate.py may be used. The output of
this script is a simple text (.dat) file containing the calculated differential delay for each scan
for each band and polarization. In addition to these .dat files, if the -f, --figures option
is specified, a plot will be generated for each band-polarization that has been fit, as well as a
summary plot for each station. The individual band-polarization plots show the time trend of
the fit solution’s delay values, the phase at DC, and phase RMS. An example is shown in figure
6. The summary plot for each station shows the time trend of the delay for each band and
polarization over the course of the session along with the mean delay value of bands BCD14. An
example summary plot is shown in figure 7. It should be noted that extracting the short-time
behavior of the proxy-cable delay is the main objective, while the overall general trend of the
delay during a session is of relatively low importance because it is expected to be removed by
the clock variation model during geodetic analysis.

Figure 6: The band B, Y-polarization, multitone proxy delay fit data for station E, experiment
vt8218.

14Note that band A is excluded from the mean by default because at several stations it is transported from
the front-end to the sampler over co-axial cable rather than optical fiber unlike the other three bands.

22

Figure 7: The summary plot for station E, displaying the mean delay of bands (BCD) for both
polarizations along with the individual delay trends for each band-polarization, for experiment
vt8218.

3.9.1 Running pcc_generate.py

The usage and options for this script are shown in listing 2. The default behavior of this
script is to process all data for the listed stations in the given directory, and it may be run as
soon as the station data files are available (after difx2mark4 is run), even if the fringe fitting
is not yet complete. For each station the earliest scan available is used as the session phase
reference. The phase calibration phases of subsequent scans are then differenced with respect
to this reference scan and a linear delay function is fit to the residual phases of each band (A,
B, C, D) and polarization (X, Y) separately. In the example below:
pcc_generate.py -o ./pcc_test -b B,C,D -p X,Y -e -f -v 3 GEH ./

the command issued will calculate the delays for bands B, C, and D, and both polarizations
for stations G, E and H. The station data files will be taken from the current directory and
output will be placed in ./pcc_test. The options -e -f -v 3 indicate that progress will be
estimated, plots will be generated, and verbosity will be set to the highest level. If no bands
and polarizations are specified, then all available will be fit.

23

Listing 2: Usage and arguments for the script pcc_generate.py
usage: pcc_generate.py [-h] [-o ODIR] [-v VERBOSITY] [-f] [-t TRIM_LENGTH]

[-d DIAGNOSTICS] [-r REF_SCAN] [-b BANDS] [-p POLS]
[-i] [-y] [-n] [-e] [-c SIGMA_CUT_FACTOR]
stations data_directory

utility for generating proxy-cable calibration delays from phase-cal tones

positional arguments:
stations concatenated string of single codes of stations of

interest
data_directory relative path to directory containing experiment or

scan data

optional arguments:
-h, --help show this help message and exit
-o ODIR, --outputdir ODIR

set output directory name, overrides default location:
<exp_dir>/pcc_datfiles.

-v VERBOSITY, --verbosity VERBOSITY
verbosity level: 0 (least verbose) to 3 (most
verbose), default=0.

-f, --figures enable standard figures, default=False.
-t TRIM_LENGTH, --trim-length TRIM_LENGTH

length of time to trim from the start of each scan
(seconds), default=2.

-d DIAGNOSTICS, --diagnostics DIAGNOSTICS
enable p-cal (1) and fit (2) diagnostics plots,
default=0 (disabled)

-r REF_SCAN, --reference-scan REF_SCAN
specify phase reference scan (defaults to first scan)

-b BANDS, --bands BANDS
list of frequency bands to process: e.g.
--bands=A,B,C,D default is all.

-p POLS, --pols POLS list of polarizations to include: e.g. --pols=X,Y,
default=X,Y default is all

-i, --include-headers
include a header line in the dat files, default=False.

-y, --yes reply yes to all prompts, default=False.
-n, --no reply no to all prompts, default=False.
-e, --estimate-progress

estimate progress, default=False.
-c SIGMA_CUT_FACTOR, --cut-sigma-factor SIGMA_CUT_FACTOR

cut tones with residual phase values which are more
than cut_factor*sigma, default=3.0 (use 0.0 to
disable).

24

3.9.2 Running pcc_select.py

As generated, the .dat files produced by pcc_generate.py are not suitable to be directly in-
corporated into the database via vgosDbProcLogs. They must first be selected and averaged
by the script pcc_select.py. The reason for this two-stage process is that some bands/polar-
izations may generate erroneous values which should not be incorporated into the proxy-cable
delay correction. Typically, reasons for rejecting a particular band/polarization are large jumps
in the delay trend, many failed fits or large outlier values, and/or large disagreement in the
delay trend with the other band/polarizations. Currently, rejection criteria for a particular
band/polarization have not been quantitatively formulated, but this will be addressed in fu-
ture versions of this document.

To run pcc_select.py the user must specify the experiment name, the directory containing
the .dat files produced by pcc_generate.py, and for each station: the bands and polarizations
which are to be selected and averaged together. For example, in the command below:
pcc_select.py -e vt8190 -d ./pcc_test/ -o ./pcmt_test -s G:BCD:XY E:BCD:Y H:BD:XY

the delays from bands B, C, and D for both polarizations will be averaged for station G, for
station E the same bands will be averaged but the X-polarization excluded, while for station
H only the delays from bands B, D, and both polarizations will be averaged into the output.
Individual band-polarizations may be selected for averaging, but if this option is chosen then
all band-polarization combinations that are to be averaged must be listed explicitly. A full
description of the usage options is given in listing 3.

Listing 3: Usage and arguments for the script pcc_select.py
usage: pcc_select.py [-h] -e EXPERIMENT_NAME -d DAT_DIRECTORY

[-o OUTPUT_DIRECTORY] [-y] [-n] -s
[STATION_BANDS_POLS [STATION_BANDS_POLS ...]]

required arguments:
-e EXPERIMENT_NAME, --experiment EXPERIMENT_NAME

Experiment name, for example: vt7226
-d DAT_DIRECTORY, --dat-dir DAT_DIRECTORY

Directory containing per-band .dat files
-s [STATION_BANDS_POLS [STATION_BANDS_POLS ...]], --select [STATION_BANDS_POLS [STATION_BANDS_POLS ...]]

Space deliminated lists of selected stations, bands,
and polarizations. Stations must be specified with
single character code. allowable values for bands: A,
B, C, D allowable values for polarizations: X, Y. The
following two examples are equivalent Example 1:
(select bands/pols collectively): G:BCD:XY E:BC:XY
V:BC:X Y:BCD:Y Example 2: (list individiual bands-pols
separately): G:BX,BY,CX,CY,DX,DY E:BX,BY,CX,CY V:BX,CX
Y:BY,CY,DY

optional arguments:
-o OUTPUT_DIRECTORY, --output-dir OUTPUT_DIRECTORY

Specify the output directory, default is DAT_DIRECTORY
-y, --yes reply yes to all prompts, default=False.
-n, --no reply no to all prompts, default=False.

4 Database creation and modification with vgosDbMake
and vgosDbProcLogs

Once the experiment has been fringe-fit in pseudo-Stokes-I mode, and any desired proxy-cable
calibration files have been prepared, a geodetic database may be generated for output to the
analysis centers. This is done using the utility vgosDbMake distributed with the nuSolve
software [1]. We will not cover the installation and configuration of this software as it is
beyond the scope of this document, but it is expected that individual correlator sites will
have determined their own directory structure for the generation and archival of experiment
database files with the vgosDb utilities.

The basic usage of the vgosDbMake utility follows the form:
vgosDbMake <options> <path-to-fringe-files>

25

For a complete description of the available options of vgosDbMake, we refer the reader to the
user guide distributed with the software [2]. A simple example demonstrating the creation of
a database named 19JAN07VG from the fringe file data from experiment 3678 is as follows:
vgosDbMake -d "19JAN07VG" /data/geodesy/3678

Note that when vgosDbMake is run it is important that the only fringe files present
in the experiment directory are those from the final pass pseudo-Stokes-I fringe
fitting. If a correlator report is to be appended to the database, it should be added at this
time via the ‘-t’ option.

After vgosDbMake has been run and a version-1 database file has been created, it is now
time to run vgosDbCalc. Assuming the a priori model information has been configured and
updated, then running vgosDbCalc is straightforward and can be done quite simply by pointing
it to the version-1 database wrapper file. For example, the following command:
vgosDbCalc /data/vgos/vgosDb/2019/19JAN07VG/19JAN07VG_V001_iMIT_kall.wrp

will augment the database with the theoretical delay model information and generate a version-
2 database wrapper.

Next the station log information should be attached to the database. The station log
files may be obtained either directly from the station operator, through CDDIS, or the IVS
website15. Once the station log files are available and have been placed in the appropriate
directory 16, appending them to the database can be done with the utility vgosDbProcLogs. For
example, to append the station log data for the session 19JAN07VG, the following command
would be run on the version-2 database wrapper:
vgosDbProcLogs -k log /media/barrettj/data/vgos/vgosDb/2019/19JAN07VG/19JAN07_V002_iMIT_kall.wrp

Note that in addition to met-data, this command will also import the station cable calibration
data for those stations which propagate this data into the station log file. For those stations
which either do not have a cable calibration unit or have one which is temporarily malfunction-
ing, a second pass with vgosDbProcLogs is necessary to attach the proxy cable calibration data.
To perform this second pass, collect the pcmt files which were generated by pcc_select.py
and place them in the same directory as the station logs. Then to simultaneously zero out any
previously existing cable calibration and insert the proxy data for the selected stations run:
vgosDbProcLogs -zc -s <station1> ... -s <stationN> -k pcmt </path/to/database/wrapper/file>

As an example, the following command:
vgosDbProcLogs -zc -s KOKEE12M -s WETTZ13S -s RAEGYEB -s GGAO12M -k pcmt /data/19JAN07VG/19

JAN07_V003_iMIT_kall.wrp

will zero out any existing cable calibration information for the stations: KOKEE12M, WETTZ13S,
RAEGYEB, and GGAO12M and replace it with the delay values found in the proxy cable cali-
bration pcmt files. This will generate a version-4 database wrapper file. At this point the basic
VGOS database creation is complete. If desired, further editing of the database may be done
interactively though nuSolve but it is recommended that this should be done in consultation
with the analysis center.

15https://ivscc.gsfc.nasa.gov/sessions/
16The location is correlator-site specific, but is usually determined at the time when the nuSolve software is

installed/configured.

26

https://ivscc.gsfc.nasa.gov/sessions/

5 VGOS data processing checklist
The complete processing chain can largely be broken down into the following steps:

1. □ Collect and mount the Mark-6 disk modules from each station. Make e-transfered data
available to the correlator file system.

2. □ Generate a file list for each station using the DiFX utility program vsum.

3. □ Obtain the session .vex file and modify it to include the frequency setup information.
Modify as needed for each station.

4. □ Following the procedure outlined in [4], set up the clocks section of the correlator .vex
file, and adjust station sampler delays if needed.

5. □ Configure the machines file for the correlator, and ensure the CALC server is running
and accessible.

6. □ Configure the .v2d file, paying particular attention to the data format provided by
each station.

7. □ Convert the vex file to DiFX input using vex2difx.

8. □ Run the correlation using startdifx to generate the delay model and launch mpifxcorr.

9. □ Once correlation is finished, convert the Swinburne files to Mk4 format using difx2mark4.
Correct any station ID labels and ensure that all channels are grouped into one band
(X).

10. □ Prepare an a priori fourfit control file for this session.

11. □ Through either vgoscf_generate.py or a combination of ffres2pcp.py/fourphase.py,
construct the pseudo-Stokes-I fourfit control file.

12. □ Use summarize_report.py to inspect the results of this process.

13. □ Fourfit all scan data in the session using the pseudo-Stokes-I fourfit control file. If
desired, this can be expedited with the program batch_fourfit.py.

14. □ Use phase_resid.py to inspect the channel phases residuals for each scan/station/chan-
nel.

15. □ Use pcc_generate.py to produce proxy-cable calibration files for those stations which
lack a dedicated cable delay calibration system.

16. □ Inspect the delay trend plots produced by pcc_generate.py to determine which bands
and polarizations should be used to compute the delay corrections. Use pcc_select.py
to select and average the appropriate files.

17. □ Generate the version-1 geodetic database using vgosDbMake.

18. □ Generate the version-2 geodetic database using vgosDbCalc.

19. □ Append the station log file data with vgosDbProcLogs to create the version-3 database.
If necessary, insert the proxy cable calibration corrections with a second pass of vgos-
DbProcLogs generating the version-4 database.

20. □ Deliver the final database to the analysis center.

27

6 Example control file

Listing 4: Example initial control file.
*==
* Example initial control file
*==
dr_win -5.e-6 5.e-6 *specify delay rate window
pc_mode multitone *specify that phase-cal will be given as multi-tone data
pc_period 1 *integration period for phase-cal tones
ion_smooth true *smooth the dTEC fit function to avoid spurious peaks
mbd_anchor sbd *use single-band delay to guide multi-band delay fit
samplers 4 abcdefgh ijklmnop qrstuvwx yzABCDEF *group channels of each sampler
ref_freq 6000.0 *specify the reference frequency
weak_channel 0.1 *lower the weak channel G code threshold
pc_amp_hcode .001 *lower the phase-cal amplitude for H codes
ion_npts 45 *set number of coarse dTEC evaulation points
ion_win -88.0 88.0 *set wide search window for dTEC
pc_tonemask cdejnprwBC 2 16 16 1 16 16 16 2 16 16 *Set tone mask for n*100 MHz and 3090 MHz

*==
* Station sampler delays
*==
if station G
sampler_delay_x -140 180 180 180
sampler_delay_y -140 180 180 180

if station E
sampler_delay_x -20 -20 -20 -20
sampler_delay_y -20 -20 -20 -20

if station H
sampler_delay_x -200 76 76 76
sampler_delay_y -200 76 76 76

if station V
sampler_delay_x 20 10 20 20
sampler_delay_y 20 10 20 20

if station I
sampler_delay_x 15 -15 -45 -50
sampler_delay_y 15 -15 -45 -50

*==
* A priori channel-by-channel phase corrections, G:X is phase reference
*==
if station G
pc_phases_y abcdefghijklmnopqrstuvwxyzABCDEF -2.5 -0.4 1.6 2.4 -0.8 0.5 2.5 2.9 -1.4 2.4 2.7 0.5 1.2 1.3 1.0

-0.5 -0.7 -1.2 0.3 -1.4 0.4 0.1 -0.9 -1.8 -3.6 -6.0 -4.2 -1.1 -2.1 -3.6 0.4 -0.7

if station H
pc_phases_x abcdefghijklmnopqrstuvwxyzABCDEF -10.2 -10.3 -9.3 -0.5 -0.1 2.0 6.1 5.0 -0.4 0.1 3.4 2.0 10.1

12.4 10.2 9.5 0.8 -6.0 -5.4 -1.6 -3.1 -0.8 -3.3 -5.2 -16.5 -11.4 -12.5 -4.3 -1.6 1.7 1.4 2.9
pc_phases_y abcdefghijklmnopqrstuvwxyzABCDEF -6.9 -6.4 -4.4 0.1 -4.6 -0.9 2.8 3.3 0.3 -0.2 0.7 4.4 11.4 14.9

11.6 11.8 -3.2 -4.6 -1.9 -3.9 -4.7 -2.5 -1.0 -4.9 -16.5 -12.3 -9.5 -1.5 4.4 2.8 14.1 16.9

if station E
pc_phases_x abcdefghijklmnopqrstuvwxyzABCDEF -4.4 -2.1 -0.1 -6.4 -1.7 10.1 17.6 19.5 8.3 13.0 11.8 13.5 9.4

8.4 3.2 4.9 -31.4 -32.0 -32.9 -29.0 -21.5 -20.8 -13.9 -13.0 18.8 13.3 12.1 5.1 6.2 7.2 13.0 14.6
pc_phases_y abcdefghijklmnopqrstuvwxyzABCDEF -13.2 -2.1 2.5 -30.2 -18.1 8.1 24.4 31.6 5.9 10.7 19.1 21.9

24.8 13.9 7.1 12.8 -18.8 -27.0 -27.8 -31.1 -23.6 -23.2 -13.6 -12.3 13.3 8.6 6.5 5.5 10.6 3.6 3.5 6.5

if station V
pc_phases_x abcdefghijklmnopqrstuvwxyzABCDEF -46.2 -37.2 -26.2 2.6 23.4 32.2 33.9 27.3 -2.5 3.4 5.4 7.8 12.6

20.9 28.4 22.6 -8.8 -8.9 -9.4 -12.6 -15.1 -23.9 -24.5 -26.0 -0.5 1.9 6.9 5.8 -7.0 -4.5 9.7 11.5
pc_phases_y abcdefghijklmnopqrstuvwxyzABCDEF -43.1 -33.7 -24.3 6.1 26.3 36.8 36.4 30.1 -9.6 -7.9 -3.2 -3.5

2.9 8.2 14.2 15.6 -2.7 -1.6 -4.6 -9.2 -11.9 -19.4 -23.0 -26.5 -4.0 -5.2 -1.5 0.9 9.5 9.9 23.7 13.6

if station I
pc_phases_x abcdefghijklmnopqrstuvwxyzABCDEF -11.6 3.6 7.6 5.0 -6.0 -3.0 -2.1 16.4 -3.3 3.4 1.1 -5.9 -7.0

-1.6 1.2 6.4 0.7 2.0 0.9 -0.8 -2.0 -3.5 -2.9 0.8 -0.3 -3.3 -7.0 4.6 4.0 -4.4 2.9 3.7
pc_phases_y abcdefghijklmnopqrstuvwxyzABCDEF -4.3 -1.5 -2.1 -8.7 0.7 2.2 6.5 18.2 -8.9 -3.8 0.4 -7.3 -3.7

-3.6 -0.1 6.6 7.1 6.0 4.4 0.4 -1.0 -3.2 -2.8 1.9 -4.0 -5.8 -6.5 -0.1 2.4 0.7 4.7 4.5

28

7 Appendix: VGOS correlator .v2d and .vex file setup ex-
amples

Listing 5: An example earth orientation parameter ($EOP) section of the session .vex file.
----------------------- begin $EOP ----------------------
$EOP;
def EOP003;
TAI-UTC = 37 sec;
A1-TAI = 0.03439 sec;
eop_ref_epoch = 2018y203d;
num_eop_points = 5;
eop_interval = 24 hr;

* I E R S Rapid Service from 26 Jul 2018 ser7
ut1-utc = 0.069047 sec : 0.069073 sec : 0.069190 sec : 0.069337 sec : 0.069516 sec;
x_wobble = 0.19271 asec : 0.19377 asec : 0.19477 asec : 0.19549 asec : 0.19588 asec;
y_wobble = 0.41361 asec : 0.41277 asec : 0.41221 asec : 0.41182 asec : 0.41136 asec;
enddef;

Listing 6: Example .v2d file configuration.
vex = vt8204.vex.obs
mjdStart = 2018y204d18h00m00s
mjdStop = 2018y205d18h00m00s;
antennas = Gs,K2
startSeries = 1005
singleScan = True
machines = Mark6-4082
nCore = 6
nThread = 2

SETUP default
{
nChan = 128
tInt=1

}

ANTENNA Gs
{
machine = Mark6-4082
format = VDIFC/0:1:2:3/8224/2
mark6filelist = vt8204_gs.filelist
sampling = COMPLEX
phaseCalInt = 5

}

ANTENNA K2
{
machine = Mark6-4082
format = VDIFC/0:1:2:3/8224/2
mark6filelist = vt8204_k2.filelist
sampling = COMPLEX
phaseCalInt = 5

}

Listing 7: Example VGOS $IF .vex configuration.
----------------------- begin $IF ----------------------
$IF;
def VGOS_std;
if_def = &IF_1N : 3N : X : 8080.0 MHz : U : 5 MHz : 0 Hz;
if_def = &IF_3N : 3N : Y : 8080.0 MHz : U : 5 MHz : 0 Hz;

enddef;
----------------------- end $IF ----------------------

Listing 8: Example VGOS $TRACKS .vex configuration.
----------------------- begin $TRACKS ----------------------
$TRACKS;
def VDIF_format;
track_frame_format = VDIF;

enddef;
----------------------- end $TRACKS ----------------------

29

Listing 9: Example VGOS $BBC .vex configuration.
----------------------- begin $BBC ----------------------
$BBC;
def VGOS_std;
BBC_assign = &BBC01 : 01 : &IF_1N;
BBC_assign = &BBC02 : 02 : &IF_1N;
BBC_assign = &BBC03 : 03 : &IF_1N;
BBC_assign = &BBC04 : 04 : &IF_1N;
BBC_assign = &BBC05 : 05 : &IF_1N;
BBC_assign = &BBC06 : 06 : &IF_1N;
BBC_assign = &BBC07 : 07 : &IF_1N;
BBC_assign = &BBC08 : 08 : &IF_1N;
BBC_assign = &BBC09 : 09 : &IF_3N;
BBC_assign = &BBC10 : 10 : &IF_3N;
BBC_assign = &BBC11 : 11 : &IF_3N;
BBC_assign = &BBC12 : 12 : &IF_3N;
BBC_assign = &BBC13 : 13 : &IF_3N;
BBC_assign = &BBC14 : 14 : &IF_3N;
BBC_assign = &BBC15 : 15 : &IF_3N;
BBC_assign = &BBC16 : 16 : &IF_3N;
BBC_assign = &BBC17 : 01 : &IF_1N;
BBC_assign = &BBC18 : 02 : &IF_1N;
BBC_assign = &BBC19 : 03 : &IF_1N;
BBC_assign = &BBC20 : 04 : &IF_1N;
BBC_assign = &BBC21 : 05 : &IF_1N;
BBC_assign = &BBC22 : 06 : &IF_1N;
BBC_assign = &BBC23 : 07 : &IF_1N;
BBC_assign = &BBC24 : 08 : &IF_1N;
BBC_assign = &BBC25 : 09 : &IF_3N;
BBC_assign = &BBC26 : 10 : &IF_3N;
BBC_assign = &BBC27 : 11 : &IF_3N;
BBC_assign = &BBC28 : 12 : &IF_3N;
BBC_assign = &BBC29 : 13 : &IF_3N;
BBC_assign = &BBC30 : 14 : &IF_3N;
BBC_assign = &BBC31 : 15 : &IF_3N;
BBC_assign = &BBC32 : 16 : &IF_3N;
BBC_assign = &BBC33 : 01 : &IF_1N;
BBC_assign = &BBC34 : 02 : &IF_1N;
BBC_assign = &BBC35 : 03 : &IF_1N;
BBC_assign = &BBC36 : 04 : &IF_1N;
BBC_assign = &BBC37 : 05 : &IF_1N;
BBC_assign = &BBC38 : 06 : &IF_1N;
BBC_assign = &BBC39 : 07 : &IF_1N;
BBC_assign = &BBC40 : 08 : &IF_1N;
BBC_assign = &BBC41 : 09 : &IF_3N;
BBC_assign = &BBC42 : 10 : &IF_3N;
BBC_assign = &BBC43 : 11 : &IF_3N;
BBC_assign = &BBC44 : 12 : &IF_3N;
BBC_assign = &BBC45 : 13 : &IF_3N;
BBC_assign = &BBC46 : 14 : &IF_3N;
BBC_assign = &BBC47 : 15 : &IF_3N;
BBC_assign = &BBC48 : 16 : &IF_3N;
BBC_assign = &BBC49 : 01 : &IF_1N;
BBC_assign = &BBC50 : 02 : &IF_1N;
BBC_assign = &BBC51 : 03 : &IF_1N;
BBC_assign = &BBC52 : 04 : &IF_1N;
BBC_assign = &BBC53 : 05 : &IF_1N;
BBC_assign = &BBC54 : 06 : &IF_1N;
BBC_assign = &BBC55 : 07 : &IF_1N;
BBC_assign = &BBC56 : 08 : &IF_1N;
BBC_assign = &BBC57 : 09 : &IF_3N;
BBC_assign = &BBC58 : 10 : &IF_3N;
BBC_assign = &BBC59 : 11 : &IF_3N;
BBC_assign = &BBC60 : 12 : &IF_3N;
BBC_assign = &BBC61 : 13 : &IF_3N;
BBC_assign = &BBC62 : 14 : &IF_3N;
BBC_assign = &BBC63 : 15 : &IF_3N;
BBC_assign = &BBC64 : 16 : &IF_3N;

enddef;
----------------------- end $BBC ----------------------

30

Listing 10: Example VGOS $FREQ .vex configuration.
----------------------- begin $FREQ ----------------------
$FREQ;
def VGOS_std;
chan_def = &X : 3480.40 MHz : L : 32.000 MHz : &Ch01 : &BBC01 : &L_cal;
chan_def = &X : 3448.40 MHz : L : 32.000 MHz : &Ch02 : &BBC02 : &L_cal;
chan_def = &X : 3384.40 MHz : L : 32.000 MHz : &Ch03 : &BBC03 : &L_cal;
chan_def = &X : 3320.40 MHz : L : 32.000 MHz : &Ch04 : &BBC04 : &L_cal;
chan_def = &X : 3224.40 MHz : L : 32.000 MHz : &Ch05 : &BBC05 : &L_cal;
chan_def = &X : 3096.40 MHz : L : 32.000 MHz : &Ch06 : &BBC06 : &L_cal;
chan_def = &X : 3064.40 MHz : L : 32.000 MHz : &Ch07 : &BBC07 : &L_cal;
chan_def = &X : 3032.40 MHz : L : 32.000 MHz : &Ch08 : &BBC08 : &L_cal;
chan_def = &X : 3480.40 MHz : L : 32.000 MHz : &Ch09 : &BBC09 : &L_cal;
chan_def = &X : 3448.40 MHz : L : 32.000 MHz : &Ch10 : &BBC10 : &L_cal;
chan_def = &X : 3384.40 MHz : L : 32.000 MHz : &Ch11 : &BBC11 : &L_cal;
chan_def = &X : 3320.40 MHz : L : 32.000 MHz : &Ch12 : &BBC12 : &L_cal;
chan_def = &X : 3224.40 MHz : L : 32.000 MHz : &Ch13 : &BBC13 : &L_cal;
chan_def = &X : 3096.40 MHz : L : 32.000 MHz : &Ch14 : &BBC14 : &L_cal;
chan_def = &X : 3064.40 MHz : L : 32.000 MHz : &Ch15 : &BBC15 : &L_cal;
chan_def = &X : 3032.40 MHz : L : 32.000 MHz : &Ch16 : &BBC16 : &L_cal;
chan_def = &X : 5720.40 MHz : L : 32.000 MHz : &Ch17 : &BBC17 : &L_cal;
chan_def = &X : 5688.40 MHz : L : 32.000 MHz : &Ch18 : &BBC18 : &L_cal;
chan_def = &X : 5624.40 MHz : L : 32.000 MHz : &Ch19 : &BBC19 : &L_cal;
chan_def = &X : 5560.40 MHz : L : 32.000 MHz : &Ch20 : &BBC20 : &L_cal;
chan_def = &X : 5464.40 MHz : L : 32.000 MHz : &Ch21 : &BBC21 : &L_cal;
chan_def = &X : 5336.40 MHz : L : 32.000 MHz : &Ch22 : &BBC22 : &L_cal;
chan_def = &X : 5304.40 MHz : L : 32.000 MHz : &Ch23 : &BBC23 : &L_cal;
chan_def = &X : 5272.40 MHz : L : 32.000 MHz : &Ch24 : &BBC24 : &L_cal;
chan_def = &X : 5720.40 MHz : L : 32.000 MHz : &Ch25 : &BBC25 : &L_cal;
chan_def = &X : 5688.40 MHz : L : 32.000 MHz : &Ch26 : &BBC26 : &L_cal;
chan_def = &X : 5624.40 MHz : L : 32.000 MHz : &Ch27 : &BBC27 : &L_cal;
chan_def = &X : 5560.40 MHz : L : 32.000 MHz : &Ch28 : &BBC28 : &L_cal;
chan_def = &X : 5464.40 MHz : L : 32.000 MHz : &Ch29 : &BBC29 : &L_cal;
chan_def = &X : 5336.40 MHz : L : 32.000 MHz : &Ch30 : &BBC30 : &L_cal;
chan_def = &X : 5304.40 MHz : L : 32.000 MHz : &Ch31 : &BBC31 : &L_cal;
chan_def = &X : 5272.40 MHz : L : 32.000 MHz : &Ch32 : &BBC32 : &L_cal;
chan_def = &X : 6840.40 MHz : L : 32.000 MHz : &Ch33 : &BBC33 : &L_cal;
chan_def = &X : 6808.40 MHz : L : 32.000 MHz : &Ch34 : &BBC34 : &L_cal;
chan_def = &X : 6744.40 MHz : L : 32.000 MHz : &Ch35 : &BBC35 : &L_cal;
chan_def = &X : 6680.40 MHz : L : 32.000 MHz : &Ch36 : &BBC36 : &L_cal;
chan_def = &X : 6584.40 MHz : L : 32.000 MHz : &Ch37 : &BBC37 : &L_cal;
chan_def = &X : 6456.40 MHz : L : 32.000 MHz : &Ch38 : &BBC38 : &L_cal;
chan_def = &X : 6424.40 MHz : L : 32.000 MHz : &Ch39 : &BBC39 : &L_cal;
chan_def = &X : 6392.40 MHz : L : 32.000 MHz : &Ch40 : &BBC40 : &L_cal;
chan_def = &X : 6840.40 MHz : L : 32.000 MHz : &Ch41 : &BBC41 : &L_cal;
chan_def = &X : 6808.40 MHz : L : 32.000 MHz : &Ch42 : &BBC42 : &L_cal;
chan_def = &X : 6744.40 MHz : L : 32.000 MHz : &Ch43 : &BBC43 : &L_cal;
chan_def = &X : 6680.40 MHz : L : 32.000 MHz : &Ch44 : &BBC44 : &L_cal;
chan_def = &X : 6584.40 MHz : L : 32.000 MHz : &Ch45 : &BBC45 : &L_cal;
chan_def = &X : 6456.40 MHz : L : 32.000 MHz : &Ch46 : &BBC46 : &L_cal;
chan_def = &X : 6424.40 MHz : L : 32.000 MHz : &Ch47 : &BBC47 : &L_cal;
chan_def = &X : 6392.40 MHz : L : 32.000 MHz : &Ch48 : &BBC48 : &L_cal;
chan_def = &X : 10680.40 MHz : L : 32.000 MHz : &Ch49 : &BBC49 : &L_cal;
chan_def = &X : 10648.40 MHz : L : 32.000 MHz : &Ch50 : &BBC50 : &L_cal;
chan_def = &X : 10584.40 MHz : L : 32.000 MHz : &Ch51 : &BBC51 : &L_cal;
chan_def = &X : 10520.40 MHz : L : 32.000 MHz : &Ch52 : &BBC52 : &L_cal;
chan_def = &X : 10424.40 MHz : L : 32.000 MHz : &Ch53 : &BBC53 : &L_cal;
chan_def = &X : 10296.40 MHz : L : 32.000 MHz : &Ch54 : &BBC54 : &L_cal;
chan_def = &X : 10264.40 MHz : L : 32.000 MHz : &Ch55 : &BBC55 : &L_cal;
chan_def = &X : 10232.40 MHz : L : 32.000 MHz : &Ch56 : &BBC56 : &L_cal;
chan_def = &X : 10680.40 MHz : L : 32.000 MHz : &Ch57 : &BBC57 : &L_cal;
chan_def = &X : 10648.40 MHz : L : 32.000 MHz : &Ch58 : &BBC58 : &L_cal;
chan_def = &X : 10584.40 MHz : L : 32.000 MHz : &Ch59 : &BBC59 : &L_cal;
chan_def = &X : 10520.40 MHz : L : 32.000 MHz : &Ch60 : &BBC60 : &L_cal;
chan_def = &X : 10424.40 MHz : L : 32.000 MHz : &Ch61 : &BBC61 : &L_cal;
chan_def = &X : 10296.40 MHz : L : 32.000 MHz : &Ch62 : &BBC62 : &L_cal;
chan_def = &X : 10264.40 MHz : L : 32.000 MHz : &Ch63 : &BBC63 : &L_cal;
chan_def = &X : 10232.40 MHz : L : 32.000 MHz : &Ch64 : &BBC64 : &L_cal;
sample_rate = 64.0 Ms/sec;

enddef;
----------------------- end $FREQ ----------------------

31

References
[1] S. Bolotin, K. Baver, J. Gipson, D. Gordon, and D. MacMillan. Transition to the vgosDb

Format. In International VLBI Service for Geodesy and Astrometry 2016 General Meeting
Proceedings, pages 222–224, 2016.

[2] S. Bolotin, K. Baver, J. Gipson, D. Gordon, and D. MacMillan. vgosDbMake-0.4.3: User
Guide. Available at https://vlbi.gsfc.nasa.gov/software/nusolve/, September 2018.

[3] R. Cappallo. Correlating and Fringe-fitting Broadband VGOS Data. Available at https:
//ivscc.gsfc.nasa.gov/publications/gm2014/019_Cappallo.pdf, 2014.

[4] B. Corey and B. Himwich. Setting Correlator Clocks for VGOS CONT17 Processing.
Available at https://www.haystack.mit.edu/geo/vlbi_td/BB/050.pdf, 2018.

[5] A.T. Deller, S.J. Tingay, M. Bailes, and C. West. DiFX: a Coftware Correlator for Very
Long Baseline Interferometry Using Multiprocessor Computing Environments. Publications
of the Astronomical Society of the Pacific, 119(853):318, 2007.

[6] A. Niell, J. Barrett, A. Burns, R. Cappallo, B. Corey, M. Derome, C. Eckert, P. Elosegui,
R. McWhirter, M. Poirier, et al. Demonstration of a Broadband Very Long Baseline Inter-
ferometer System: A New Instrument for High-Precision Space Geodesy. Radio Science,
September 2018. doi:10.1029/2018rs006617.

[7] A.E. Niell. VGOS Band and Channel Frequency Configuration. Available at https://
www.haystack.mit.edu/geo/vlbi_td/BB/044.pdf, 2017.

32

https://vlbi.gsfc.nasa.gov/software/nusolve/
https://ivscc.gsfc.nasa.gov/publications/gm2014/019_Cappallo.pdf
https://ivscc.gsfc.nasa.gov/publications/gm2014/019_Cappallo.pdf
https://www.haystack.mit.edu/geo/vlbi_td/BB/050.pdf
http://dx.doi.org/10.1029/2018rs006617
https://www.haystack.mit.edu/geo/vlbi_td/BB/044.pdf
https://www.haystack.mit.edu/geo/vlbi_td/BB/044.pdf

	Introduction
	Correlation
	Data file preparation
	Vex file preparation
	Clock model generation and sampler delay adjustment

	DiFX input conversion and running the correlation
	Running difx2mark4

	Fringe-fitting and Post-processing
	Post-processing software installation
	Overview
	Initial control file
	Residual phase adjustment with ffres2pcp.py
	Polarization phase/delay offset calibration with fourphase.py
	Generating a pseudo-Stokes-I mode control file with vgoscf_generate.py
	Configuration options of ffres2pcp.py, fourphase.py, and vgoscf_generate.py
	Pseudo-Stokes-I polarization fringe-fitting
	Proxy cable calibration
	Running pcc_generate.py
	Running pcc_select.py

	Database creation and modification with vgosDbMake and vgosDbProcLogs
	VGOS data processing checklist
	Example control file
	Appendix: VGOS correlator .v2d and .vex file setup examples

