To: SRT Group
From: Alan E.E. Rogers

Subject: Interferometer geometry calculations

For the “VLBI” mode we start with the latitude, longitude and height of each end of the “baseline” and convert to geocentric right handed x, y, z coordinates. This coordinate conversion is done by function

\[
x = (n + hgt) \cos(lat) \cos(lon)
\]
\[
y = (n + hgt) \cos(lat) \sin(lon)
\]
\[
z = (n + (1-e) + hgt) \sin(lat)
\]

where

\[
n = \frac{a}{(1-e\sin^2(lat))^{1/2}}
\]
\[
a = 6378137 \text{ m} \quad \text{WGS84}
\]
\[
e = 2f-f^2
\]
\[
f = 1/298.257223563 \quad \text{WGS84}
\]

The vector baseline is defined as the vector from site1 (the “reference” site) to site2 (the remote site)

\[
b_x = x_2 - x_1
\]
\[
b_y = y_2 - y_1
\]
\[
b_z = z_2 - z_1
\]

The delay \(\tau \) of a signal’s arrival at the remote site is

\[
\tau = -\frac{\vec{b} \cdot \vec{s}}{c} = -\left(b_x s_x + b_y s_y + b_z s_z \right)/c
\]

Where \(c \) = velocity of propagation

\(\vec{s} = \) unit vector in the direction of the source

\(s_x = \cos(\text{dec}) \cos(\text{gha}) \)
\(s_y = -\cos(\text{dec}) \sin(\text{gha}) \)
\(s_z = \sin(\text{dec}) \)

where \(\text{gha} = \text{gst} - \text{ra} \) = Greenwich hour angle
\(\text{gst} = \) Greenwich sidereal time
\(\text{ra} = \text{apparent right ascension} \)
\(\text{dec} = \text{apparent declination} \)

or from the derivatives of the phase with respect to \(\text{ra} \) and \(\text{dec} \)

\[
\phi = \left(\frac{2 \pi}{\lambda} \right) \left(\cos(\text{dec}) \cos(\text{gha}) b_x - \cos(\text{dec}) \sin(\text{gha}) b_y + \sin(\text{dec}) b_z \right)
\]

In units of fringes per arc second

\[
\begin{align*}
\mu &= (b_x \sin(\text{gha}) + b_y \cos(\text{gha})) \left(\frac{\pi}{648,000 \lambda} \right) \\
\nu &= (b_x \cos(\text{dec}) - b_y \cos(\text{gha}) \sin(\text{dec}) + b_y \sin(\text{gha}) \sin(\text{dec}) \left(\frac{\pi}{648,000 \lambda} \right))
\end{align*}
\]

The interferometer phase (normally defined as being positive (NRAO’s convention) when the signal arrives earlier at the 2\(^{\text{nd}}\) site is

\[
\phi = \frac{+2 \pi \vec{b} \cdot \vec{s}}{\lambda} \quad (\text{radians})
\]

or \(\phi = -2 \pi \frac{f}{\lambda} \quad (\text{radians}) \)

where \(\lambda = \text{wavelength (m)} \)
\(f = \text{frequency (Hz)} \)

The components of the baseline projected in the direction of the source in the directions of increasing RA and increasing declination are known as \(u \) and \(v \) and are often expressed in units of fringes per arc second. These can be derived from the baseline projections

\[
\begin{align*}
\mu &= b_x \sin(\text{gha}) + b_y \cos(\text{gha}) \\
\nu &= b_x \cos(\text{dec}) - b_y \cos(\text{gha}) \sin(\text{dec}) + b_y \sin(\text{gha}) \sin(\text{dec})
\end{align*}
\]