Stepped and Triple-Cap Headstack Specification for VLBI Tape Recorders

17 August 1998

Revision 1.2

User Institutions

Jean Casse
Joint Institute for VLBI in Europe
Dwingeloo, Netherlands

Hans F. Hinteregger
Haystack Observatory
Massachusetts Institute of Technology
Westford, MA 01886

George Peck
National Radio Astronomy Observatory
Socorro, New Mexico, 87801

Benno Rayhrer
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91109

 Manufacturers

Metrum-Datatape Inc.
4800 East Dry Creek Road
Littleton, CO, 80122-3700

Spin Physics Inc.
12205 World Trade Drive
San Diego, CA 92128-3719

This document combines the three previous documents specifying the construction of the VLBI head-stacks written by MIT Haystack Observatory, NRAO and JPL. The original document was written by the Haystack Observatory to describe a set of rules to manufacture the Mk3A/VLBA stepped head-stacks [1]. This document has recently been updated by NRAO [2] based on the changes that occurred in thin tape and VLBA recording. Specs for the manufacturing of the triple-cap head-stacks was written by JPL [3] based on the new general specs given by NRAO [2] and a Haystack-drawing [4]. The current specification is written based on consensus of the institutions mentioned above and the two manufacturers Metrum-Datatape, Inc. and Spin Physics, Inc.
DRAWINGS:

Figure 1: VLBA drawing number C54330M030 Rev-D : Stepped headstack.
Figure 2: Haystack drawing number 54330K001 Rev-D : Triplecap contour.
Figure 3: Haystack drawing number 6310-117 Rev-A : AMP connector.
Figure 4: Haystack drawing number 6311-24-Rev-D : Contour inspection block.

INSPECTION SHEETS:

1) Optical inspection sheets of the head profiles:
 a) for the stepped headstack (two required for complete inspection at the heads 2 and 33),
 b) for the triple cap headstack (two required for complete inspection at the heads 2 and 33),
2) Head edge location measurement sheet for compliance with Spec 1.4,
3) Initial depth of gap measurement sheet.
4) Electrical performance documentation sheet.

SPECIFICATIONS:

1. MECHANICAL:

1.1 HEADS PER STACK: 36
1.2 HEAD PITCH: 0.0275” (0.6985 mm)
1.3 HEAD WIDTH: 0 .0015” (0.0381mm)
1.4 HEAD EDGE LOCATION TOLERANCE: +/- 0.00012” (3 µm) worst case out of 72 with respect to best fit ideal pattern at 23°C.
1.5 HEAD NUMBERING CONVENTION: When viewed from the side opposite the normal mounting side with the tape-bearing surface up, the head numbers increase from right to left, from #0 to #35. The odd-numbered heads are wired to the connector closer to this (non-mounting) side. In this view the high mounting hole is on the left.
1.6 OVERALL DIMENSIONS: LxWxH = 1.560” x 0.300” x 0.400” each +/- 0.005”.

1.7.a GAPLINE AND MOUNTING SURFACE PARALLELISM: 0.0005” (end-to-end of tip plate, approximately 1.13” long).

1.7.b GAPLINE-TO-MOUNTING-SURFACE DISTANCE: 0.150” +/- 0.005”.

Note-1: The parallelism requirement supercedes the distance requirement, and both must be met.

Note-2: The parallelism requirement is equivalent to keeping the absolute value of the difference of gapline-to-mounting surface distances at head #2 and head#33 less than or equal to 10 µm as indicated in the optical inspection sheets.
1.7.c Same as 1.7.a and 1.7.b applied to the alternate mounting surface opposite 'normal'.

1.8 CONTOUR ROTATION ANGLE: 5.0° +/- 0.2°, counterclockwise when viewed from end closest to head #35. The internal angle between mounting surface –on the left if the tape-bearing surface (step) is up- and the plane in which both step edges lie, is nominally 95 degrees. The headstack carrier has no wrap angle adjustment. The gap plane may be parallel to the mounting surface or (as in the original design) normal to the plan tangent to the contour at the gapline.

1.8.a Internal angle between plane of both step edges and alternate mounting surface is 85° +/- 0.2°.

1.9 MOUNTING HOLES: The high (left in Figure 1) hole is 0.180” and the low (right in Figure 1) hole 0.320” below the step (top of headstack). Thru-hole diameter is 0.079/0.081” and the 0.125” counterbore is 0.075” deep. The holes are 0.080” from the ends and spacing is 1.400”. Unless otherwise noted all hole location and depth tolerances are +/- 0.005”. The headstack is mounted with, 0.3”, 0-80 screws, and at most two washers (0.110” OD x 0.066” ID x 0.016” thick) using an alignment jig.

1.10 END TRIM: 0.299” +/- 0.005” from either end to center of nearest head, #0 and #35 respectively.

1.11 GAP APEX-LINE STRAIGHTNESS: 0.0001” (2.5 μm) maximum bow in depth-of-gap direction.
 Note: Process conformance can be checked by flat lapping a worn-out head.

1.12 CONNECTORS: pair of 40-pin AMP#1-203990-7 connectors, or compatible equivalent, mounted flush with bottom of head stack, centered with 0.105” +/- 0.010” spacing between centerlines of internal rows of connector pins. Must not project at all, nor be recessed more than 0.010”, from the bottom of the head stack. Must be securely fastened; epoxy must not wick into sockets. Odd or even head wires in order, with consistent polarity, to the central 36 sockets of each connector. See Figures 1 and 3 for more information.

1.13 INITIAL DEPTH OF GAP: 0.0010” minimum. Both tip-plate ends must be optically observable in cross-section (end-view) to permit inspection for initial depth of gap. End-to-end difference in initial depth of gap is not to exceed 0.0001”. Larger depth of gap desired to increase head life. If focus height measurements are needed to correct for wear and end "roll-off” then see the Inspection Sheet #3.

1.14 GAP LENGTH: 11.8-17 μin (300-430 nm)
 Note: The definitive test for conformance is measurement of gap null wavelength.
2. HEAD PROFILE:

For symmetry, assume measurements with stack mounted on 5° surface of inspection block. See Figure 4.

2.1 CONTOUR ROTATION ANGLE 5.0° +/- 0.2°, CCW viewed from end closest to head # 35.

2.2 GAPLINE-TO-STEP-EDGE DISTANCE: 0.0059" +/- 0.0002" (150 +/- 5 µm) end-to-end.

2.3 OFF-STEP PROFILE: Must be designed and tolerated so that when the head is worn to the gap apex, no part of the off-step contour is closer to the tape than 0.0020". Assume the tape leaves the last tape bearing edge at 5°. This requirement must be met by any profile beyond the first and last tape bearing edge.

2.4 TAPE-BEARING SURFACE DESCRIPTION: The contour height with respect to step edges, as manufactured, shall be 2 µm (typical) for the triple-cap head and 3.5 µm (typical) for the stepped head. See the Inspection Sheets 1.a,b for more details.

Note: For the triple cap head, 1.8 µm height corresponds to 6.3 mm radius, and for the stepped head 3.4 µm height corresponds to 3.3 mm radius.

2.5 ERROR IN TAPE-BEARING SURFACE ORIENTATION ANGLE: +/- 0.20° max, (For example, 1 µm max difference in focal height between the step edges for a 300 µm wide step, or 3µm maximum between outer edges of outriggers). See inspection sheet.

2.6 DISTANCE BETWEEN CROSS TAPE DIRECTION CONTOUR-ENDS AND HEAD-PATTERN-CENTER: 0.560" minimum. Initial machine contouring extends to the ends of the gap bar (tip plate).

2.7 TAPE-BEARING SURFACE QUALITY: Epoxy glue lines not to exceed 0.0008” width; bubbles in glass or epoxy not to exceed 0.0003”.
3. ELECTRICAL PERFORMANCE:

3.1 INDUCTANCE (for reference only): 15/25 µH, measured at 250 kHz. Original design uses 48 turns of #50 wire.

3.2 RESISTANCE (for reference only): Less than 5 ohms.

3.3 READ PERFORMANCE SPECIFICATION: Greater than or equal to 20 dB signal to noise, when measured as follows:

A. Reading a VLBI formatted test tape, optimally recorded\(^1\), undegraded\(^2\), standard low-pass filtered\(^3\), one bit sampled, random noise signal recorded at 2.21 fc/µm (56250 fc/in),

B. on a SONY D1K tape, supplied by Haystack or NRAO,

C. at a speed of 4.064 m/s (160 ips), bi-directionally (report both directions, difference not to exceed 1 dB),

D. in a 30 kHz resolution bandwidth centered at 4.4 MHz,

E. noise level measured with tape stopped,

F. using VLBA head-interface/preamps, spectrum analyzer, and scope for eye-pattern check,

G. at a nominal tension of 10" water vacuum in a Metrum 96 tape drive.

4. MATERIALS (for reference only):

4.1 HEAD TIPS: single-crystal MnZn-ferrite [Hitachi HS-3] or equivalent; oriented (211) tape bearing plane, (110) cross-section plane (end of gapped bar), (111) side of gapped bar (parallel to gap plane).

4.2 SPACERS: Calcium Titanate (3M851D) or Corning Fotoceram or equivalent.

5. APPLICATION (for reference only):

Write and read 1”-wide 900 Oe D1/SVHS-equivalent tapes at 2.21 fc/µm.

\(^1\) Recorded with the lowest current that maximizes the short wavelength 0.9 µm (4.4 MHz at 160 ips) response.

\(^2\) A reference head used only for this purpose measures degradation. Upto 2dB degradation is acceptable for purposes of measuring read performance. Correction for such degradation accompanied with proper documentation is allowed.

6. **COMPATIBILITY** (for reference only):

6.1 MECHANICAL: Physically compatible with headstack mount/positioner designed by Haystack Observatory – design is in public domain – for MkIIIA, VLBA, and MkIV VLBI recording systems. This dual mount/positioner is mechanically fitted to a Metrum 96 drive.

6.2 ELECTRONIC: The connectors, including geometry of placement, are compatible with MkIIIA write-only and read-only interfaces as well as VLBA/MkIV read-or-write interfaces.
APPENDIX A: Changes And Modifications to the Specifications

The following change(s) have been made to the specification.

- Figure 1 VLBA Drawing No.: Stepped Headstack C54330M030
 Rev. C became Rev. D.
 Gapline to mounting surface distance 150±0.005µm on each side of the gapline.

- Inspection Sheet 1.6: VLBI Triple Cap Contour Inspection Sheet 1.b.
 Rev.C became Rev.D.
 GMS in dimension x7 and x8¹ have been changed.
References:

HIGH SPEED TRIPLE CAP CONTOUR
ALL DIMENSIONS IN MICRONS
ONLY ONE SIDE SHOWN

NOTE: CENTER AND OUTRIGGER CONTACTS ARE APPROXIMATELY ON A RADIUS OF 6000µm.
(RADIUS LAP NOT REQ'D).

CENTER SURFACE
(FLAT LAP)

OUTRIGGER SURFACE
(GRIND OR PREFER FLAT LAP)

CENTER SURFACE
(FLAT LAP)

OUTRIGGER SURFACE
(GRIND OR PREFER FLAT LAP)

1270 (REF)

HIGH SPEED TRIPLE CAP CONTOUR

IMPLEMENTATION

NOTE: CENTER AND OUTRIGGER CONTACTS ARE APPROXIMATELY ON A RADIUS OF 6000µm.
(RADIUS LAP NOT REQ'D).
NOTES:
1. SEE VLBA DWG. C54330M030 FOR COMPATIBLE HEADSTACK SPECIFICATIONS.

DRAWN BY: R.J. CADY 2/93
CHECKED BY: PROJECT ENGINEER MATL. PROCESS STRUCTURES THERMAL ANALYSIS
NORTH EAST RADIO OBSERVATORY CORPORATION
HAYSTACK OBSERVATORY
WESTFORD, MASSACHUSETTS
MKIIIA / VLBA / MKIV
AMP CONNECTOR, OUTLINE DIMENSIONS
COMPATIBLE HEADSTACK

AMP 9005
40 LEGS

.025 DIA. 20 x 2 = 40 HOLES

SHOP NOTES: UNLESS OTHERWISE SPECIFIED
1. DIMENSIONS ARE IN INCHES
2. TOLERANCE ON DIMENSIONS:
 FRACTIONAL ± 1/64
 DECIMAL ± 0.01
 ANGULAR ± 0.03°
3. SURFACE ROUGHNESS
 PER MIL-STD-10
4. REMOVE BURRS AND BREAK SHARP EDGES 1/64 MAX.
5. SCREW THREADS PER MIL-STD-9
6. ALL DIMENSIONS TO APPLY BEFORE PLATING OR CONVERSION COATING.
#0-80UNF -2B X .15 DEEP, 4 HOLES

NORMAL MOUNTING POSITION

SHARP CORNERS

ALTERNATE MOUNTING POSITION

CONTOUR INSPECTION BLOCK

MKIII / VLBA / MKIV COMPATIBLE HEADSTACK

MATL: PRECISION PARALLEL GROUND FLAT STEEL

TOL:
XXX ± .005
XX ± .01
ANG ± .02°

63°
MEASUREMENTS ARE IN MICRONS, TAKEN AT:
CHANNEL #2, NEAR LOW C'BORE HOLE,
FAR END IN THIS VIEW, AND CHANNEL #33,
NEAR HIGH HOLE END

HEAVY LINE BOXES INDICATES THAT
INSPECTION ENTRY IS REQUIRED

AGMS(#2) - AGMS(#33) [-10/+10]
*LIVE REQUIREMENT, ONLY AGMS
MEASUREMENTS USE L MTG
SURFACE OF INSPI BLOCK AND ALT
MTG SURFACE OF HEADSTACK

VLBI STEPPED CONTOUR
INSPECTION SHEET #1a
H. HINTEREGGER 06/18/98
CAD FILE: INSPECT.DWG REV C
Stepped and Triple-Cap Headstack Specifications for VLBI Recorders

Inspection Sheet No. 2: Head Edge Location Measurement Sheet

Attached is an example of head edge location measurements, (See spec 1.4). Note that in this example the head number labeling conforms to the old specification, 1-36. The measurements included with new headstacks should conform to the VLBA head numbering convention, 0-35, which is not only offset by one but also inverted with respect to the "old" specification, as indicated in the plot. In addition to the data sheet a chart similar to the one attached should be generated.

The specification of +/- 3 µm worst case edge location residual applies to the sum of the magnitude of worst case residual and certifiable worst case measurement error in excess of 0.3 µm.

In general we recommend that all documentation be provided in machine-readable form.
Insp. Sheet No. 2/2

2 Aug 1997
09:58:07

HP Laser Measurement System 5528A — HP Program 'LASER14'
Abs. Bar. Press.: 24.52 in Hg 70.0 Deg. F 44% Rel. Humidity
Velocity of Light Compensation Factor: 778.6
Material coefficient of expansion: 10.7 ppm per deg C

METRUM Part No. 16819211-
Mechanical Specifications:
 Head Edge Location Tolerance: +/- .003 mm
 Head Pitch: 0.6985 mm
 Head Width: 0.0381 mm
 No. of Heads per Stack: 36

Head Stack Serial No.: K74

<table>
<thead>
<tr>
<th>Head No.</th>
<th>Head Edge Location Rdg</th>
<th>Nominal Location (mm)</th>
<th>Best Fit Rdg - Nom (microns)</th>
<th>Best Fit Cntrn - Nom (microns)</th>
<th>Head Width (microns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-1.8</td>
<td>-1.7</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0.0382</td>
<td>0.0381</td>
<td>-1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.6982</td>
<td>2.6965</td>
<td>-1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.7368</td>
<td>2.7366</td>
<td>-1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.3963</td>
<td>1.3970</td>
<td>-2.5</td>
<td>-2.1</td>
<td>.8</td>
</tr>
<tr>
<td>6</td>
<td>1.4352</td>
<td>1.4351</td>
<td>-1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2.0949</td>
<td>2.0955</td>
<td>-2.2</td>
<td>-2.3</td>
<td>.3</td>
</tr>
<tr>
<td>8</td>
<td>2.1332</td>
<td>2.1336</td>
<td>-2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2.7941</td>
<td>2.7940</td>
<td>-1.7</td>
<td>-1.3</td>
<td>.8</td>
</tr>
<tr>
<td>10</td>
<td>2.8330</td>
<td>2.8321</td>
<td>-1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3.4921</td>
<td>3.4925</td>
<td>-2.2</td>
<td>-1.9</td>
<td>.6</td>
</tr>
<tr>
<td>12</td>
<td>3.5308</td>
<td>3.5306</td>
<td>-1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4.1908</td>
<td>4.1910</td>
<td>-2.0</td>
<td>-1.4</td>
<td>1.2</td>
</tr>
<tr>
<td>14</td>
<td>4.2301</td>
<td>4.2291</td>
<td>-1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4.8904</td>
<td>4.8895</td>
<td>-1.9</td>
<td>-1.4</td>
<td>1.0</td>
</tr>
<tr>
<td>16</td>
<td>4.9295</td>
<td>4.9276</td>
<td>-2.3</td>
<td>-1.3</td>
<td>.7</td>
</tr>
<tr>
<td>17</td>
<td>5.5891</td>
<td>5.5880</td>
<td>-2.5</td>
<td>-1.3</td>
<td>.7</td>
</tr>
<tr>
<td>18</td>
<td>5.6279</td>
<td>5.6261</td>
<td>-1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>6.2875</td>
<td>6.2865</td>
<td>-1.8</td>
<td>-1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>20</td>
<td>6.3262</td>
<td>6.3246</td>
<td>-1.2</td>
<td>-1.2</td>
<td>2.1</td>
</tr>
<tr>
<td>21</td>
<td>6.9856</td>
<td>6.9850</td>
<td>-1.2</td>
<td>-1.1</td>
<td>2.1</td>
</tr>
<tr>
<td>22</td>
<td>7.0258</td>
<td>7.0231</td>
<td>-1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>7.6835</td>
<td>7.6835</td>
<td>-1.4</td>
<td>-0.7</td>
<td>1.3</td>
</tr>
<tr>
<td>24</td>
<td>7.7233</td>
<td>7.7216</td>
<td>-1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>8.3335</td>
<td>8.3320</td>
<td>-0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>8.4222</td>
<td>8.4201</td>
<td>-0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>9.0816</td>
<td>9.0805</td>
<td>-1.7</td>
<td>-0.2</td>
<td>.9</td>
</tr>
<tr>
<td>28</td>
<td>9.1206</td>
<td>9.1186</td>
<td>-0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>9.7806</td>
<td>9.7790</td>
<td>-0.2</td>
<td>-0.0</td>
<td>.3</td>
</tr>
<tr>
<td>30</td>
<td>9.8190</td>
<td>9.8171</td>
<td>-0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>10.4787</td>
<td>10.4775</td>
<td>-0.6</td>
<td>-1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>32</td>
<td>10.5178</td>
<td>10.5156</td>
<td>-1.4</td>
<td>-0.4</td>
<td>1.7</td>
</tr>
<tr>
<td>33</td>
<td>11.1765</td>
<td>11.1760</td>
<td>-1.3</td>
<td>-0.4</td>
<td>1.7</td>
</tr>
<tr>
<td>34</td>
<td>11.2163</td>
<td>11.2141</td>
<td>-1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>11.8752</td>
<td>11.8745</td>
<td>-1.1</td>
<td>-1.1</td>
<td>1.9</td>
</tr>
<tr>
<td>36</td>
<td>11.9152</td>
<td>11.9128</td>
<td>-1.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Insp. Sheet No. 2/3

Head Stack Serial No.: K74

<table>
<thead>
<tr>
<th>Head No.</th>
<th>Head Edge Location Rdg (mm)</th>
<th>Nominal Location (mm)</th>
<th>Best Fit Rdg - Nom (microns)</th>
<th>Best Fit Cntrl - Nom (microns)</th>
<th>Head Width Msd - Nom (microns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>12.5737</td>
<td>12.5730</td>
<td>-1.1</td>
<td>-0.0</td>
<td>2.1</td>
</tr>
<tr>
<td>20</td>
<td>12.6139</td>
<td>12.6111</td>
<td>1.0</td>
<td>-1.0</td>
<td>.4</td>
</tr>
<tr>
<td>21</td>
<td>13.2730</td>
<td>13.2715</td>
<td>-3</td>
<td>-1.0</td>
<td>.4</td>
</tr>
<tr>
<td>22</td>
<td>13.9715</td>
<td>13.9700</td>
<td>-3</td>
<td>.4</td>
<td>1.3</td>
</tr>
<tr>
<td>23</td>
<td>14.0109</td>
<td>14.0081</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>14.6705</td>
<td>14.6685</td>
<td>.2</td>
<td>.9</td>
<td>1.4</td>
</tr>
<tr>
<td>25</td>
<td>14.7100</td>
<td>14.7066</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>15.3673</td>
<td>15.3670</td>
<td>.5</td>
<td>.8</td>
<td>.6</td>
</tr>
<tr>
<td>27</td>
<td>15.4080</td>
<td>15.4051</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>16.0672</td>
<td>16.0655</td>
<td>-1</td>
<td>-.7</td>
<td>1.5</td>
</tr>
<tr>
<td>29</td>
<td>16.1068</td>
<td>16.1036</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>16.7659</td>
<td>16.7640</td>
<td>.1</td>
<td>.9</td>
<td>1.5</td>
</tr>
<tr>
<td>31</td>
<td>16.8055</td>
<td>16.8021</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>17.4648</td>
<td>17.4625</td>
<td>.5</td>
<td>.6</td>
<td>.1</td>
</tr>
<tr>
<td>33</td>
<td>17.5030</td>
<td>17.5006</td>
<td>.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>18.1628</td>
<td>18.1610</td>
<td>0.0</td>
<td>1.0</td>
<td>1.9</td>
</tr>
<tr>
<td>35</td>
<td>18.2028</td>
<td>18.1991</td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>18.9011</td>
<td>18.8976</td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>19.5602</td>
<td>19.5580</td>
<td>.4</td>
<td>.8</td>
<td>.7</td>
</tr>
<tr>
<td>38</td>
<td>19.5950</td>
<td>19.5961</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>20.2562</td>
<td>20.2565</td>
<td>-.1</td>
<td>.8</td>
<td>1.7</td>
</tr>
<tr>
<td>40</td>
<td>20.2980</td>
<td>20.2946</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>20.9550</td>
<td>20.9550</td>
<td>-.3</td>
<td>1.0</td>
<td>2.5</td>
</tr>
<tr>
<td>42</td>
<td>20.9971</td>
<td>20.9931</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>21.6535</td>
<td>21.6535</td>
<td>0.0</td>
<td>.6</td>
<td>1.1</td>
</tr>
<tr>
<td>44</td>
<td>21.6945</td>
<td>21.6916</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>22.3541</td>
<td>22.3520</td>
<td>.3</td>
<td>1.3</td>
<td>1.9</td>
</tr>
<tr>
<td>46</td>
<td>22.3941</td>
<td>22.3901</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>23.0522</td>
<td>23.0505</td>
<td>-.1</td>
<td>1.0</td>
<td>2.2</td>
</tr>
<tr>
<td>48</td>
<td>23.0925</td>
<td>23.0886</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>23.7424</td>
<td>23.7490</td>
<td>1.6</td>
<td>1.9</td>
<td>.5</td>
</tr>
<tr>
<td>50</td>
<td>23.7910</td>
<td>23.7871</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>24.4499</td>
<td>24.4475</td>
<td>.6</td>
<td>1.5</td>
<td>1.7</td>
</tr>
<tr>
<td>Mean Track Width:</td>
<td>.03925 mm</td>
<td>Mean Track Pitch:</td>
<td>.69859 mm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SAMPLE OF MEASURED HEAD EDGE LOCATION RESIDUALS

MEASURED HEAD EDGE LOCATION RESIDUALS

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

HEAD NUMBER (VLBA CONVENTION SPECIFIED)

EDGE 1
EDGE 2
BEST FIT CENTERLINE

HEAD #1 AS TABULATED IN EXAMPLE.

HEAD #1 AS TABULATED IN EXAMPLE.
Stepped and Triple-Cap Headstack Specifications for VLBI Recorders

Inspection Sheet No. 3: Initial Depth of Gap Measurement Sheet

Notes:
0. Use X100 objective for focus height measurements
1. Headstock doesn't need to be leveled accurately for 'F' (Focus height) measurements.
2. 'F' assumed positive in down (depth) direction
3. 'F' = 0 at arbitrary point along Gap-Line, conveniently at highest 'F' of [FLM, FHM, F2, F33]
4. Check repeatability of 'F' measurements, to ±1 µm plus or minus max
5. Gap-Line Bow: (F2 + F33 - F17 - F18) / 2 = ±1 µm assuming worst case error = 1.6

Depth-of-Gap of head #N: DN = D'L + (D'O'H - D'L)(XL - 2P + NP) / (XL + XH + 31P), assuming 1.) straight Apex-Line, and 2.) straight Gap-Line

Note, as a result of normal tape wear:
1. Gap-Line tends to remain straight from #2 thru #33 within ±1 µm
2. #0 and #35 tend to wear ~6 µm deeper than straight-line fit, and
3. #1 and #34 tend to wear 2-3 µm deeper than straight-line fit.
Stepped and Triple-Cap Headstack Specifications for VLBI Recorders

Inspection Sheet No. 4:

Electrical Performance Documentation Sheet

The specification applies to the better direction and the best available recorded track regardless of write direction speed. The direction difference in output must not exceed 1 dB.

In the Example the recording used was later found to be 2dB degraded or suboptimally recorded, so that corrected or correctly measured SNR's are actually correspondingly higher.

In the example the test recording is not traceable; it should be.

The user should be able to reconcile the manufacturer's SNR measurements with his own within +/- 0.5 dB when using a piece of same reference recording and same preamp design.

A plot of performance vs. head number is desirable.
Narrow Track Stack Electrical Test
Test by Michael J. Perez

PART NUMBER: 16819211-006
SERIAL NUMBER: K95

Serial end D.O.G. •• 0017 in/ .04318 mm
Blank end D.O.G. •• 00165 in/ .04191 mm

TAPE SPEED 160 IPS & 10in. WATER VACUUM
30KHZ SLOT SNR @ 4.4 MHz 20 dB Minimum
Data procured using HP3585A Spectrum Analyzer

Center Frequency - 4.4 MHz
Video BW - 1 Hz
Sweep Time - 400 msec

<table>
<thead>
<tr>
<th>TRACK</th>
<th>FWD (dBm)</th>
<th>REV (dBm)</th>
<th>NOISE (dBm)</th>
<th>SNR (dBm)</th>
<th>E-R</th>
<th>TRACK</th>
<th>FWD (dBm)</th>
<th>REV (dBm)</th>
<th>NOISE (dBm)</th>
<th>SNR (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0.7</td>
<td>48.2</td>
<td>-48.9</td>
<td>-68.9</td>
<td>20.7</td>
<td></td>
<td>+0.7</td>
<td>48.4</td>
<td>-48.1</td>
<td>-68.5</td>
<td>21.1</td>
</tr>
<tr>
<td>+0.9</td>
<td>47.0</td>
<td>-47.9</td>
<td>-67.9</td>
<td>20.9</td>
<td></td>
<td>+0.9</td>
<td>46.5</td>
<td>-46.6</td>
<td>-67.8</td>
<td>21.3</td>
</tr>
<tr>
<td>+0.5</td>
<td>47.1</td>
<td>-47.6</td>
<td>-68.2</td>
<td>21.1</td>
<td></td>
<td>+0.5</td>
<td>47.7</td>
<td>-47.8</td>
<td>-68.2</td>
<td>20.5</td>
</tr>
<tr>
<td>+0.2</td>
<td>47.0</td>
<td>-45.8</td>
<td>-67.8</td>
<td>21.0</td>
<td></td>
<td>+0.2</td>
<td>48.9</td>
<td>-46.9</td>
<td>-67.8</td>
<td>21.8</td>
</tr>
<tr>
<td>+0.11</td>
<td>46.2</td>
<td>-46.4</td>
<td>-67.4</td>
<td>21.2</td>
<td></td>
<td>+0.11</td>
<td>45.9</td>
<td>-45.8</td>
<td>-67.3</td>
<td>21.5</td>
</tr>
<tr>
<td>+0.13</td>
<td>46.9</td>
<td>-47.3</td>
<td>-68.3</td>
<td>21.4</td>
<td></td>
<td>+0.13</td>
<td>46.0</td>
<td>-46.0</td>
<td>-66.4</td>
<td>22.4</td>
</tr>
<tr>
<td>+0.15</td>
<td>45.9</td>
<td>-46.4</td>
<td>-67.6</td>
<td>21.7</td>
<td></td>
<td>+0.15</td>
<td>44.5</td>
<td>-45.1</td>
<td>-67.7</td>
<td>23.4 MAX</td>
</tr>
<tr>
<td>+0.17</td>
<td>47.3</td>
<td>-47.4</td>
<td>-68.0</td>
<td>20.7</td>
<td></td>
<td>+0.17</td>
<td>44.5</td>
<td>-45.5</td>
<td>-67.8</td>
<td>23.3</td>
</tr>
<tr>
<td>+0.19</td>
<td>45.6</td>
<td>-46.0</td>
<td>-67.0</td>
<td>21.4</td>
<td></td>
<td>+0.19</td>
<td>43.8</td>
<td>-44.4</td>
<td>-67.0</td>
<td>23.2</td>
</tr>
<tr>
<td>+0.21</td>
<td>46.4</td>
<td>-46.5</td>
<td>-67.4</td>
<td>21.0</td>
<td></td>
<td>+0.21</td>
<td>45.0</td>
<td>-45.4</td>
<td>-67.4</td>
<td>22.4</td>
</tr>
<tr>
<td>+0.23</td>
<td>47.1</td>
<td>-46.7</td>
<td>-67.4</td>
<td>20.7</td>
<td></td>
<td>+0.23</td>
<td>44.5</td>
<td>-45.3</td>
<td>-67.2</td>
<td>22.7</td>
</tr>
<tr>
<td>+0.25</td>
<td>47.8</td>
<td>-47.5</td>
<td>-67.6</td>
<td>20.5</td>
<td></td>
<td>+0.25</td>
<td>45.2</td>
<td>-46.7</td>
<td>-67.8</td>
<td>21.9</td>
</tr>
<tr>
<td>+0.27</td>
<td>46.5</td>
<td>-46.9</td>
<td>-67.3</td>
<td>20.8</td>
<td></td>
<td>+0.27</td>
<td>45.7</td>
<td>-46.6</td>
<td>-67.5</td>
<td>20.9</td>
</tr>
<tr>
<td>+0.29</td>
<td>47.2</td>
<td>-47.3</td>
<td>-67.7</td>
<td>20.5</td>
<td></td>
<td>+0.29</td>
<td>46.7</td>
<td>-47.4</td>
<td>-67.9</td>
<td>21.2</td>
</tr>
<tr>
<td>+0.31</td>
<td>47.1</td>
<td>-47.9</td>
<td>-67.6</td>
<td>20.5</td>
<td></td>
<td>+0.31</td>
<td>46.8</td>
<td>-46.8</td>
<td>-67.6</td>
<td>20.8</td>
</tr>
<tr>
<td>+0.33</td>
<td>45.2</td>
<td>-46.0</td>
<td>-66.1</td>
<td>20.6</td>
<td></td>
<td>+0.33</td>
<td>45.6</td>
<td>-45.2</td>
<td>-66.3</td>
<td>21.1</td>
</tr>
<tr>
<td>+0.35</td>
<td>45.1</td>
<td>-45.3</td>
<td>-65.7</td>
<td>20.6</td>
<td></td>
<td>+0.35</td>
<td>44.8</td>
<td>-45.2</td>
<td>-65.8</td>
<td>21.0</td>
</tr>
</tbody>
</table>