Analysis of the Relationship between a Change in Wind Field Curl Rate and Sea Surface Height within the Beaufort Gyre Region of the Arctic

Tyler Pelle (Advisement from Pedro Elosegui)
MIT Haystack Observatory and SUNY Oswego
tpelle@oswego.edu
Beaufort Gyre

- Anticyclonic circulation system
- Between 130° - 180°W
- Contains the majority of the Arctic Ocean’s freshwater
- Circulation controlled by the Beaufort High
Ekman Mechanics

- Frictional drag of winds on ocean surface lead to **Ekman Transport**: Horizontal ocean water movement

- Coriolis effect: Surface ocean water deflected 45° to the right of the mean wind

- Spatial gradients in Ekman Transport lead to **Ekman Pumping**: Vertical ocean water movement
Doming in the Beaufort Gyre

Previous research by Giles et al. 2012:

- Accumulations of 8,000 ± 2,000 km3 of freshwater in the Beaufort Gyre from 1996 to 2010.
- Wind-driven convergence controls freshwater variability within this region.

Project Goals

1. Quantitatively determine if there has been a significant anticyclonic wind curl regime over the time period of 1996 to 2010

2. Create a robust algorithm to obtain velocity measurements from drifting ice platforms’ location data and interpolate low-resolution sea ice drift velocity measurements to the individual platform drift tracks

3. Gain a better understanding of the relationships between the surface wind, ocean processes, and sea ice movement
Wind Curl ~ Data Sources

U and V wind components obtained from 1996 to 2010

- NCEP/NCAR Reanalysis
 - Daily Mean
 - 2.5° by 2.5° grid

- ECMWF Interim Reanalysis
 - Daily Mean
 - 2.5° by 2.5° grid

- Japanese 55-Year Reanalysis (JRA-55)
 - 4x Daily Observations
 - 0.75° by 0.75° grid
Wind Curl Methods

\[\nabla \times \mathbf{u} |\mathbf{u}| = \left(\frac{\partial (v |\mathbf{u}|)}{\partial x} - \frac{\partial (u |\mathbf{u}|)}{\partial y} \right) \hat{z} \]

- *netCDF4* and *pygrib* modules used to read in data

- Trimmed data files:
 - Western Arctic: 70°- 82.5°N, 130°- 180°W
 - Entire Arctic: 70°- 90°N, 0°- 360°W

- Vorticity calculated with *Windspharm*, uses spherical harmonic wind vector analysis.
 - Validation completed with artificial datasets
Wind Curl Anomaly Plot

- Anomalies within the Western Arctic
- Total mean generated by averaging all months of wind curl data
- Annual anomalies computed by subtracting the total mean curl from the annual means of the monthly data.
- Error bars: Standard deviation scaled by square-root of χ^2 per degree of freedom
- Slope error: Least-mean-square standard error
Average of All Reanalyses

Mean Wind Curl Anomalies: 1996-2010

\[-0.113 \pm 0.037 \left(10^{-6} \text{m} \cdot \text{s}^{-2} \cdot \text{yr}^{-1}\right)\]
Curl Trend & Uncertainty Plots

- Defined to the entire Arctic
- Curl trend defined by the difference field at each pixel:
 - Subtracted year i+1 from year i for all years of data, then averaged
- Standard error at each pixel from a least-mean-squares analysis over the 15 year period
- Both data fields projected onto a northern hemisphere polar stereographic conformal map projection
NCEP/ NCAR Reanalysis

NCEP Wind Curl Trend (1996 - 2010)

NCEP Wind Curl Trend Standard Error (1996 - 2010)
ECMWF Interim Reanalysis
Wind Curl Trend Conclusions

- Insignificant wind curl anomaly trend
- Error accounts for over 30% of the anomaly’s slope
- Further minimalized by the error bars
- Uncertainty in the trends average at about 60% of the calculated trend

Fresh water variability in Beaufort Gyre is not entirely controlled by the wind field . . . So what else controls it?
Moving onto the Arctic Ocean

- Seek to determine why climate models have underestimated the rate of sea ice melt

Models use low resolution sea ice data - could be missing movement between observational periods, thus decreasing calculated energy
Ice Velocity ~ Data Sources

- **High Resolution** SI04 SATICE drifting ice platform data
 - July 4th to July 27th, 2015
 - Observations taken every 15-minutes
 - Location as lat / lon with calculated errors
 - Single track - determined by ocean currents

- **Low Resolution** OSI-SAF 48 hour sea ice drift data
 - 62.5 km Polar Stereographic grid
 - Displacement as initial and final location in lat/lon
 - Field spans the entire Arctic Ocean
SI04 Drift Track: July 4th to July 27th

2,304 location observations were taken during this track
SI04 Velocity Profile and Associated Power Spectrum

SI04 Buoy Speed Measurements

Error: ± 0.0127 km·hr⁻¹

Power Spectrum of SI04 Buoy Speed Measurements
Just the tip of the iceberg . . .

- Interpolate low-resolution sea ice data to the track of the SI04 ice drifting platform
- Expand this study to longer time scales and more drifting platforms
 - Compare energy in high-resolution observations to that of the low-resolution observations
 - Determine how much energy the models are possibly missing
- Input changes into models

Example low-resolution ice drift plot to be interpolated. Note the Beaufort Gyre’s circulation!
Acknowledgements

- Pedro Elosegui
- Phil Erickson
- K.T. Paul
- Everyone here at the MIT Haystack Observatory
- National Science Foundation
NCEP/NCAR Reanalysis

NCEP Wind Curl Anomalies (Daily Observations): 1996-2010

$-0.174 \pm 0.044 \ (10^{-11}\ m^2/s^2 \ yr^{-1})$
ECMWF Interim Reanalysis

ECMWF Wind Curl Anomalies: 1996-2010

-0.052 ± 0.032 (10^{-6} m \cdot s^{-2} \cdot yr^{-1})
JRA-55

$-0.112 \pm 0.043 \left(10^{-6} \text{m.s}^{-2} \cdot \text{yr}^{-1}\right)$