Modeling Regional Ionospheric Electron Density

Cole Tamburri
Mentor: Larisa Goncharenko
Overview

1. Background
2. Data Sources
3. Error Reduction
4. Input Parameters
5. Results and Model Performance
6. Future Work
7. Acknowledgements
8. References
1. Background

- Ionosphere (~50-1,000 km above Earth’s surface)
 - Region of high electron density
 - Fluctuations affect communication, navigation, etc.
 - GPS signals attenuated, refracted, reflected

- Electron density variability
 - Solar flux, geomagnetic activity, periodic variability
 - Forcing from below? (Goncharenko et al. 2018)

- Project goal: create an empirical model for ionospheric total electron content (TEC) using geomagnetic activity, solar flux, and seasonal variation as parameters.

Credit: Rishbeth 1988

Typical Ionospheric Profile
2. Data Sources

- TEC – GNSS, provided by CEDAR Madrigal database.
 - Delay between two radio frequencies isolates TEC
 - Measured in TEC units (1 TECU = 10^6 electrons/m^2)
 - Available in 1° x 1° bins with 5 min temporal resolution since 2000

![Binned vTEC, 15 March 2013, 00:00:00](image)
2. Data Sources

• Solar Flux and delays
 • 10.7cm radio flux (f10.7) – CEDAR Madrigal Database
 • Extreme Ultraviolet flux (EUV) – TIMED Solar Extreme Ultraviolet Experiment (SEE)

• Geomagnetic Activity
 • Ap3 (3-hour Ap index), Kp (logarithmic), and delays – CEDAR Madrigal Database
3. Dealing with Data Quality Problems

- Sidereal motion of satellites causes periodic “streaks” in TEC data plot
 - More severe at solar minimum (absolute error remains relatively the same)
- Regions of low GPS coverage offer less data
- Goal: remove “streaks” while preserving reliable TEC variability
3. Dealing with Data Quality Problems

- Hampel filter
 - Vertical (13 point window, 1σ criterion)
 - Horizontal (3 point window, 3σ criterion)
- Cubic spline interpolant with low tolerance
- Iterative model-building - removal of points with:
 1. % data-model beyond 2σ of the mean
 2. Solar flux and delays < 0.007 W/m²
 3. Ap3 and delays < 80 sfu
4. Input Parameters: Solar Flux

• Indices available for use: EUV, f10.7
 • f10.7 – captures last solar cycle of data well according to Mukhtarov et al. (2013)
 • EUV – more comprehensive, able to identify smaller-scale disturbances

• Modulation by annual, semiannual, four-monthly, and three-monthly terms.

• Different delays investigated – not a moving 81-day average of solar flux

• Sample: 45LAT, 0LON
4. Input Parameters: Geomagnetic Index

- Several available indices – Ap3, Kp, Dst
- Longer-term delays statistically significant for general model – 3 hour, 24 hour, 48 hour, 72 hour
- Sample: 45LAT, 0LON
4. Input Parameters: Solar Zenith Angle

- Potential to be used in place of annual periodic fluctuation/modulation
- Less easily implemented into the model, no improvement in performance.
- Convenience of use
- Sample: 45LAT, 0LON
4. Input Parameters: Final Selection

- EUV flux (quadratic)
- EUV delays: 1 day, 8 days, 24 days, 36 days
- Ap3 index (quadratic)
- Ap3 delays: 3 hours, 24 hours, 48 hours (quadratic), 72 hours
- Seasonal terms: annual, semiannual, four-monthly, three-monthly
- Modulation of EUV linear term by annual, semiannual, three-monthly terms
- Modulation of EUV quadratic term by all periodic terms

Total number of predictors: 36
5. Results and Model Performance

• Final Model: Linear Regression
 • Notable/unprecedented: developed at 45° latitude with 3° spatial resolution in longitude, 30 minute temporal resolution
 • RMS Error of 1.78 TECU for whole model at 45LAT
 • 3.387 TECU for Mukhartov et al. (2013), ~2.9 TECU for Feng et al. (2019), 3.5 TECU for Lean et al. (2016)
 • Metrics considered: MAE, MSE, RMSE, MARE, MSRE, RMSRE, MAPE, MSPE, RMSPE

![TEC data at 45LAT, 0LON, 01-Jan-2015 - 01-Jan-2016](image1)

![TEC model at 45LAT, 0LON, 01-Jan-2015 - 01-Jan-2016, v74](image2)

![TEC, 45LAT, 0LON, MAPE, Version74](image3)

![TEC, 45LAT, 0LON, RMSE, Version74](image4)

![TEC, 45LAT, 0LON, RMSPE, Version74](image5)
5. Results and Model Performance

- Solar flux dependence
 - Increase in error associated with model at high solar flux values
 - Better model performance for moderate solar flux values
6. Future Work

• Expansion of model to other latitudes with $3^\circ \times 3^\circ$ spatial resolution.

• Expansion of model to longer time period
 • GNSS TEC available since 2000
 • Geomagnetic/Solar Flux Indices available since 1963
 • EUV only available from TIMED SEE since 2002
 • Possible to expand EUV coverage to 2000 using SOLAR2000 model

• Investigation of additional drivers/independent variables

• Identification of anomalies using final model
7. Acknowledgements

• This work was funded by the National Science Foundation through its generous Research Experience for Undergraduates program.

• Thanks to my mentor, Larisa Goncharenko, who provided insight, inspiration, and patience throughout the summer.

• Thanks to Bill Rideout and Anthea Coster for development of the CEDAR Madrigal Database and to the TIMED SEE team for provision of EUV data.

• Finally, thanks to the entire MIT Haystack Observatory staff and my fellow REUs for cultivating a welcoming, educational environment for an all-too-short summer.

8. References

8. References

