Generation and propagation of dayside and nightside LSTIDs

Toshi Nishimura, S. Zhang, L. Lyons, Y. Deng, A. Coster, J. Moen, L. Clausen, W. Bristow, N. Nishitani

Large-scale traveling ionosphere disturbance (LSTID)

- More frequent during high auroral activity
- Most LSTID researches use low-mid latitude data without identifying the source region.

Nightside LSTID

LSTID emerges out of the auroral oval after an auroral substorm.

It provides evidence that abrupt heating in the auroral oval creates LSTID.

[Lyons et al., 2019]

Nightside LSTID

Nightside LSTID

The ionosphere-thermosphere simulation (GITM) successfully reproduced the TEC and neutral density perturbation.

Dayside LSTID

Polar cap <u>ATEC</u> Polar cap <u>ATEC</u> <u>ATEC</u> <u>AURORA</u> 15 9 <u>LSTID 2</u> <u>LSTID 1</u> <u>LSTID 1</u> <u>LSTID 1</u> <u>LSTID 1</u> <u>LSTID 2</u> <u>LSTID 1</u> <u>LSTID 2</u> <u>LSTID 2</u> <u>LSTID 1</u> <u>LSTID 2</u> <u>LSTID 1</u> <u>LSTID 2</u> <u>LSTID 1</u> <u>LSTID 2</u> <u>LSTID 1</u> <u>LSTID 2</u> <u>LSTID 2</u> <u>LSTID 2</u> <u>LSTID 2</u> <u>LSTID 2</u> <u>LSTID 2</u> <u>LSTID 1</u> <u>LSTID 2</u> <u>LSTID 1</u> <u>LS</u>

- While aurora is most dynamic in the night, LSTID is most frequent near noon.
- Where is the source region of dayside LSTIDs?
 Dayside aurora or nightside aurora?
- What does determine the period of LSTIDs?
 Periodic energy input? Internal I-T processes?

We take advantage of wide coverage and high-resolution TEC and dayside auroral imaging.

2-d evolution of dayside aurora and ΔTEC

31 Dec 2018

Time series

IMF southward turning

Dayside auroral (cusp) quasi-periodic brightening and PMAFs

 LSTIDs were generated in the dayside auroral oval.
 Propagating both poleward and equatorward.

Likely driven by enhanced energy input during southward IMF.

[Nishimura et al., 2020]

Equatorward propagation

LSTIDs originate near the oval equatorward boundary and propagate equatorward.

Correlating with the major TEC enhancements in the auroral oval.

Dayside auroral heating creates LSTID.

⁵ Dayside aurora lasts long and
 ⁵ occurs frequently, giving high
 ⁴ occurrence of dayside LSTID.

Poleward propagation

Most ⊿TEC pulses have corresponding PMAFs.

Quasi-periodic electron precipitation creates rapid TEC enhancements, which propagate poleward.

The period varies. Not coherent oscillation but driven by variable auroral forcing.

Relation to plasma flow

The poleward plasma flow (negative radar Doppler velocity) weakened when the IMF turned northward.

The equatorward-propagating ⊿TEC is unaffected and against convection. Consistent with thermospheric gravity waves.

The poleward-propagating ⊿TEC slowed down. Follows the convection speed.

Summary

- We investigated the source and propagation of nightside and dayside LSTID events using TEC and auroral imaging.
- **Nightside**: Strongly related to auroral activity. Driven by auroral heating. LSTID.
- Dayside mid-latitude: Related to major auroral activity. LSTID.
- **Dayside polar cap**: Related to each auroral activity. ExB?

Questions

- Is nightside LSTID caused by auroral heating [Shiokawa et al., 2002] or subauroral heating [Zhang et al., 2017; Guo et al., 2018]? It is difficult to separate in TEC data. Satellite-dependent biases exist.
- How do we understand longitude and latitude dependent propagation?
 - Neutral temperature, coupling to E-region, Vertical propagation
- How much do ExB and TAD contribute to polar cap ⊿TEC?
- How much do TID/TAD contribute to momentum and transfer in the ionospherethermosphere system?