
Ionospheric Radar Experiment Scenario Modeling
Natalie Larson, Vanderbilt University

MIT Haystack Observatory REU Summer 2011
Mentors: Bob Schaefer, Phil Erickson

MIT Haystack's Atmospheric Sciences Group has for nearly 50 years operated the Millstone Hill upper
atmospheric radar, focused on studies of the near-Earth space environment. The radar is
a complex system, which can pose a challenge for experiment design. The aim of this project was to
build a graphical user interface to allow a scientist to easily design and model scenarios of
experiment flow through the Millstone Hill radar experiment chain. This end was achieved by creating
an interface that allows a user to draw a state chart and convert the drawing into a parameter file that can
then be converted into python code for controlling the radar. The software supports such functions as
moving objects, cutting, pasting, saving and opening files, undoing actions, redoing actions, adding and
editing state and transition attributes, and choosing attributes from previously entered data. The software
also performs a number of tasks to automatically ensure that a drawing is consistent. While open
source software exists to translate code into state chart drawings, no low-cost readily available software
could be found to translate state chart drawings into code. For this reason, and for the flexibility and
control self-made software affords, the state chart drawing program was created from scratch.

ABSTRACT

PROGRAM USE

• Attributes of states and transitions such as name, code to be executed when a
state is entered, and a group name for events corresponding to a particular
process may be entered in pop-up menus that appear when the user right-
clicks an event or state

ALGORITHMS

SAMPLE DRAWING SAMPLE PARAMETER FILE

-State 1 is a required, implicit
concurrent base and transition 1 is a
required, implicit start transition for
State 1

-States must be listed
with parent states appearing before
child states

[STATE_1]
name = StateID_0
parent = None
type = ConcurrentState
entry = None
do = None
exit = None

[STATE_2]
name = StateID_1
parent = StateID_0
type = State
entry = None
do = None
exit = None

[TRANSITION_2]
start = start
end = StateID_1
event = None
guard = None
action = None

[TRANSITION_3]
start = start
end = StateID_3
event = None
guard = None
action = None

FUTURE WORK

1

2

3

4

1. The parent fields of states and the start
and end fields of transitions are sensed
and automatically recorded upon any
creation, move, or paste of a state or
event. Note the parent of StateID_23
and start and end attributes of
EventID_25 before the move.

2. Select Groups of objects using the Select
Group button, which creates a rectangular drag
tool. Single objects may be selected with the
“Select Object” button, by clicking within a
delta distance of an object’s perimeter.

3. Selected objects are highlighted and
can then be dragged.

4. The mouse button has not yet been
released. The arrow representing
EventID_25 overlaps the circle
representing StateID_19.

FEATURE ALGORITHM
Saving and opening files Pickling: Python function that turns objects into byte streams

Keeping start arrows consistent Find the smallest surrounding rectangle to find parent type: hierarchical or concurrent, and
update arrows according to type. Check for consistency every time an object is created,
moved, pasted or erased. If parent is concurrent: check that each child object has one start
arrow and make changes as necessary. If hierarchical: look for a start arrow within the
rectangle, keep the first arrow found and erase all other start arrows, else if no start arrow
was found, assign a start arrow to the first object found .

Real-time drawing of arrows Change coordinates of arrowhead to current cursor location and continually redraw the
screen

Real-time drawing of rectangles
and ability to drag a rectangle in
any direction

Calculate the vector that starts at the start click and ends at the current mouse location; rotate
it 45 degrees in each direction to form the rectangle. The uppermost, leftmost, point on the
rectangle and its width and height are the input to a GTK rectangle drawing function.

Snap-to-fit arrows If the point clicked is within a delta distance of a certain shape’s perimeter, create a vector
from the shape’s center to the point clicked; if the object is a circle, scale the vector by the
radius of the circle to obtain the snap-to point on the circle; if the object is a rectangle,
determine which edge will be crossed by the vector and find the intersection of the vector
and the line segment of the rectangle’s edge to find the snap-to point.

Highlighting/Selecting objects Is the click within a delta distance of any object’s perimeter? Arrow: does the point lie within
the rectangle created by delta d on either side and on either end of the line segment? Circle:
does the point satisfy the equation of the circle, accounting for delta d? Rectangle: does the
point lie within any of the four rectangles created by delta d on either end and on either side
of each line segment?

Ensuring consistency of parent
fields of states and start and end
fields of transitions

Basis: find the smallest surrounding rectangle to find an object’s parent. Currently the code
accounts for a number of specific conditions individually. For example, if a rectangle is
moved or erased, make the parent field of all objects that previously had that rectangle as a
parent the moved rectangle’s former parent. This approach does not waste time or space
making unnecessary updates but is more complex than an approach which checks all objects
with every move, create, paste, and erase action.

Undo/Redo Keep a set of super-lists to hold the current values of all variables needed to recreate the
current drawing. Append new values to each of the lists any time an action is taken. Undo
an action by moving backward through the set of lists; redo by moving forward.

Moving object(s) For all highlighted objects, draw vectors from the original point clicked to all object
parameters needed to draw the object (for example, radius, for a circle). As the cursor
moves, update the object’s parameters to be the current location of the mouse minus the
vector corresponding to the parameter.

Printing states so that each
parent state is printed before its
child

Use a depth-first-search: add the base state to a list. While the list is not empty, pop the last
state from the list, write that state’s attributes to the file, and add its children to the list. Print
all circles afterward.

• Print and print preview buttons
• Capability to represent events that are turned into messages and then back into events to facilitate

distributed computing
• Ability to draw loops at any location on a shape
• Rotation of event names so that they appear at the same angles as the arrows to which they correspond
• Ability to extend or contract lengths of arrows when objects or groups of objects are moved, if keeping all

objects attached is desired
• Possible standardization of all shapes as rectangles
• Way to show movement that does not cause the screen to blink

USE CASE: MOVING AN OBJECT

HIERARCHICAL CONCURRENT
States contained must be
visited serially

States contained may be
visited independently

Processed on one computer Processed in parallel on
multiple computers

States contained must have
one and only one start
transition

States contained must each
have a start transition

Updates made automatically by the program:
-Number of start transitions within a super-state
-Parents of objects
-Start and end fields for transitions
-Snap-to-fit arrows

Transition: Event
that causes one
state to transition
to another

State Super-state: Composed of other states
-May be either hierarchical or concurrentTransition

to self

Available Menu Bar items

5. The mouse button has been
released and the program has
automatically corrected the length
and attachment point of
EventID_25, has deleted the start
arrow pointing to StateID_23
since its super-state, StateID_1, is
Hierarchical, and has updated the
parent attribute of StateID_23 and
the start and end attributes of
Event ID_25.5

[STATE_3]
name = StateID_3
parent = StateID_0
type = State
entry = None
do = None
exit = None

[TRANSITION_1]
start = start
end = StateID_0
event = None
guard = None
action = None

[TRANSITION_4]
start = StateID_1
end = StateID_3
event =
Group_1.EventID_5
guard = None
action = None

PROGRAM FLOW

	Slide Number 1

