GPU Based Polyphase Filter Banks for VLBI

Mark McCurry
Christopher Beaudoin & Geoff Crew

MIT Haystack REU Program 2011
Outline

Introduction
 What is being done?
 PFB
 Hardware

Implementation
 CUDA

Results
 Quality
 Quantity

Future Work

Conclusions
What is being done?

DSP

- Input of Analog values from data source near 4 Gb/s
What is being done?

DSP

- Input of Analog values from data source near 4 Gb/s
- Perform Polyphase Filter Bank (PFB) on a Nvidia GPU
What is being done?

DSP

- Input of Analog values from data source near 4 Gb/s
- Perform Polyphase Filter Bank (PFB) on a Nvidia GPU
- Output of channelized frequency spectrum
What is being done?

DSP

- Input of Analog values from data source near 4 Gb/s
- Perform Polyphase Filter Bank (PFB) on a Nvidia GPU
- Output of channelized frequency spectrum
- All of this done in realtime
Polyphase Filter Bank

Two Channel Polyphase Filter Bank

\[x[n] \xrightarrow{\downarrow 2} \xrightarrow{z^{-1}} \xrightarrow{\downarrow 2} E_0(z) \xrightarrow{\text{FFT}} f_1[n] \]

\[x[n] \xrightarrow{\downarrow 2} \xrightarrow{E_1(z)} \xrightarrow{\text{FFT}} f_2[n] \]
Roach Digital Backend (RDBE)
Nvidia GPUs
CUDA

What is CUDA?
```cpp
__global__ void cu_unquantize(float *dest, const int8_t *src, size_t N)
{
    const size_t i = blockDim.x*blockIdx.x + threadIdx.x;
    if (i<N)
        dest[i] = static_cast<float>(src[i]);
}
```
CUDA

CUDA 2

//Setup via cudaMemcpy

//input and output are on the GPU
cu_unquantize<<<10,10>>>(output, input, 100);

//Return via cudaMemcpy
Quality of output: Actual

Magnitude response of 256 tap FIR, 32 tap FFT based PFB

Normalized Gain

Frequency (half-cycles/second)
Quality of output: Matlab

![Matlab Prototype PFB](image_url)
Speed

Table: Performance of GPU Code\(^1\)

<table>
<thead>
<tr>
<th>Performance Metrics</th>
<th>Data Input Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Implementation</td>
<td>744 MB/s</td>
</tr>
<tr>
<td>No extra channels</td>
<td>540 MB/s</td>
</tr>
<tr>
<td>Hardcoding FIR size</td>
<td>756 MB/s</td>
</tr>
<tr>
<td>Hardcoded FIR, Hand Tuned Block Size</td>
<td>890 MB/s</td>
</tr>
<tr>
<td>Using 1/10 cost 470GTX</td>
<td>637 MB/s</td>
</tr>
</tbody>
</table>

\(^1\)As of August 1st
Increasing Speeds

How to proceed:

▶ Profiling, and extensive testing
Increasing Speeds

How to proceed:

- Profiling, and extensive testing
- Effective use of CUDA resources
Increasing Speeds

How to proceed:

▶ Profiling, and extensive testing
▶ Effective use of CUDA resources
▶ Waiting for new cards
Conclusions

- CUDA makes heavyweight software processing possible
Conclusions

- CUDA makes heavyweight software processing possible
- Real time processing is possible at lower rates
Conclusions

- CUDA makes heavyweight software processing possible
- Real time processing is possible at lower rates
- GPU processing is applicable to Astronomy and scientific computation