Mapping the 36 GHz Methanol Masers

Hannah Seyb
Vincent Fish
What is to come:

- Background
 - What are astrophysical masers?
 - Methanol masers
- Data Collection
- Data Reduction
- Analysis
- Conclusions/Discussions
- Questions
What is a Maser?

- Microwave Amplification by Stimulated Emission of Radiation
- Population inversion
 - More molecules in upper energy states
- Exponential amplification of transitioning molecules
What does this look like?

E_2

E_1
Astrophysical Masers

- Masers that naturally occur in space
- Emitted radiation has same energy as difference between two states
- Common types:
 - Water: H₂O
 - Hydroxyl: OH
 - Formaldehyde: H₂CO
 - Methanol: CH₃OH
Methanol (CH$_3$OH) Masers

- Many different transitions result in masers
- Locations:
 - Star-forming regions
 - Supernova Remnants
 - Galactic Center
- Two different types:
 - Class I
 - Class II
Class I

- Excited by shocks
- Along outflows from continuum sources
- Common transitions:
 - $J_0-(J-1)_1 A^+$ series
 - 7_0-6_1 at 44.070 GHz
 - $J_2-(J-1)_1 E$ series
 - 5_2-5_1 at 24.959 GHz
 - 6_2-6_1 at 25.018 GHz
 - $J_{-1}-(J-1)_0 E$ series
 - $4_{-1}-3_0$ at 36.169 GHz
Class II

- Located near continuum sources
- Ultra Compact HII regions
- Common transitions:
 - (J-1)$_1$-J$_0$ A$^+$ series
 - 5_1-6_0 at 6.7 GHz
 - E series
 - 2_0-3_{-1} at 12.2 GHz
- Some have shared energy states with class I masers, so they cannot occur at same locations
 - 44 GHz and 6.7 GHz
What can CH$_3$OH masers tell us?

- Velocity of gas
- Characteristics of gas flow
- Trace shocks
- Star formation
Source Selection and Data Acquisition

- 12 Star forming regions
- Previously detected 36 GHz CH$_3$OH masers
 - Haschick and Baan (1989)
 - Pretap et al. (2008)
- EVLA in D or DnC configuration
- 9 July - 15 August 2010
Data Reduction

- NRAO Astronomical Image Processing System (AIPS)
- Calibration
 - Quasars
 - Self-calibration
- Image cubes
 - Spectral channels
- Located and mapped masers
Data Analysis

- **Velocity**
 - Fixed sky frequency: 36.169265 GHz
 - Convert to LSR velocities
 - NRAO Online Dopset Tool
- **Mapped along with other transitions**
 - 44 GHz
 - Verify various models (temperature and density dependency)
 - Commonalities in excitation conditions
Correlations with other transitions

(0,0) R.A. 18:00:30.4 Dec. -24:04:00.0 (J2000)

The black “X” marks the position of a continuum source we detected. (0,0) is R.A. 23:13:45.0 Dec. 61:27:36.0 (J2000)
SgrB2

- Two pointings (SgrB2 N and M)
- Not much correlation with 36 GHz and 44 GHz

(0,0) R.A. 17:47:20.4 Dec. -28:23:05.0 (J2000)
Some 44/36 GHz overlap; velocity
36 GHz trace the eastern edge of the outflow
Along evacuated cavity
 - NH₃ agreement
Edge of higher density CH₃OH
Interface of molecular material in shocked environments
Conclusions

- Correlations between 36 GHz and 44 GHz
 - 1 source had strong 36/44 overlap
 - 2 sources had moderate correlation
 - 36 GHz masers outnumber 44 GHz
 - 2 sources had only 1 overlap
 - 44 GHz outnumber 36 GHz
 - 1 source had no overlap
 - 4 sources did not have any 44 GHz data

- Density dependency
Future Work

- Find more information on sources of interest
- Gain more knowledge about:
 - Environments in which the masers are found
 - Find commonalities in the sources
 - Class I CH$_3$OH masers
 - Relationships between various transitions
Acknowledgements

- Dr. Vincent Fish
- Dr. Loránt Sjouwerman, NRAO
- Dr. Ylva Pihlström, University of New Mexico
- Dr. Hauyu Baobab Liu, Harvard-Smithsonian CfA
- National Science Foundation
- MIT Haystack Observatory
- Guilford College
Questions?