Mapping the 36 GHz Methanol Masers

Hannah Seyb Vincent Fish

QuickTime™ and a decompressor are needed to see this picture.

QuickTimeTH and a decompressor are needed to see this picture

What is to come:

- Background
 - OWhat are astrophysical masers?
 - OMethanol masers
- Data Collection
- Data Reduction
- Analysis
- Conclusions/Discussions
- Questions

What is a Maser?

- Microwave Amplification by Stimulated Emission of Radiation
- Population inversion
 One molecules in upper energy states
- Exponential amplification of transitioning molecules

What does this look like?

Astrophysical Masers

Masers that naturally occur in space

- Emitted radiation has same energy as difference between two states
- Common types:
 - \bigcirc Water: H₂O
 - OHydroxyl: OH
 - ○Formaldehyde: H₂CO
 - OMethanol: CH₃OH

Methanol (CH₃OH) Masers

Many different transitions result in masers
 Locations:

 Star-forming regions
 Supernova Remnants
 Galactic Center

 Two different types:

- ○Class I
- ○Class II

Class I

Excited by shocks

Along outflows from continuum sources

- Common transitions:
 - J_0 -(J-1)₁ A⁺ series • 7_0 - 6_1 at 44.070 GHz • J_2 -(J-1)₁ E series • 5_2 - 5_1 at 24.959 GHz • 6_2 - 6_1 at 25.018 GHz • J_{-1} -(J-1)₀ E series • 4_{-1} - 3_0 at 36.169 GHz

Class II

- Located near continuum sources
- Ultra Compact HII regions
- Common transitions:
 - \bigcirc (J-1)₁-J₀ A⁺ series
 - 5₁-6₀ at 6.7 GHz
 - E series
 - 2₀-3₋₁ at 12.2 GHz
- Some have shared energy states with class I masers, so they cannot occur at same locations
 - 44 GHz and 6.7 GHz

What can CH₃OH masers tell us?

- Velocity of gas
- Characteristics of gas flow
- Trace shocks
- Star formation

Source Selection and Data Acquisition

- 12 Star forming regions
- Previously detected 36 GHz CH₃OH masers
 - O Haschick and Baan (1989)
 - Cliechti and Wilson (1996)
 - OPretap et al. (2008)
- EVLA in D or DnC configuration
- 9 July 15 August 2010

Data Reduction

 NRAO Astronomical Image Processing System (AIPS)

Calibration

Quasars

Self-calibration

Image cubes

Spectral channels

Located and mapped masers

Data Analysis

Commonalities in excitation conditions

Correlations with other transitions

(0,0) R.A. 18:00:30.4 Dec. -24:04:00.0 (J2000)

The black "X" marks the position of a continuum source we detected. (0,0) is R.A. 23:13:45.0 Dec. 61:27:36.0 (J2000)

SgrB2

- Two pointings (SgrB2 N and M)
- Not much correlation with 36 GHz and 44 GHz

(0,0) R.A. 17:47:20.4 Dec. -28:23:05.0 (J2000)

G10.6-0.4

- Some 44/36 GHz overlap; velocity
- 36 GHz trace the eastern edge of the outflow
- Along evacuated cavity
 NH₃ agreement
- Edge of higher density CH₃OH
- Interface of molecular material in shocked environments

CH₃OH gas flow of the J=5 transition (Liu et al., 2011). Contour levels are at at 1, $\sqrt{2}$, 2, $2\sqrt{2}$, 4, $4\sqrt{2}$, 8, and $8\sqrt{2}$ in units of Jy km/s. (0,0) R.A. 18:10:28.7 Dec. -19:55:50.0 (J2000)

Conclusions

Correlations between 36 GHz and 44 GHz O1 source had strong 36/44 overlap O2 sources had moderate correlation 36 GHz masers outnumber 44 GHz O2 sources had only 1 overlap 44 GHz outnumber 36 GHz O1 source had no overlap O4 sources did not have any 44 GHz data Density dependency

Future Work

- Find more information on sources of interest
- Gain more knowledge about:
 Environments in which the masers are found
 Find commonalities in the sources
 Class I CH₃OH masers
 Relationships between various transitions

Acknowledgements

- Dr. Vincent Fish
- Dr. Loránt Sjouwerman, NRAO
- Dr. Ylva Pihlström, University of New Mexico
- Dr. Hauyu Baobab Liu, Harvard-Smithsonian CfA
- National Science Foundation
- MIT Haystack Observatory
- Guilford College

