
Messaging Patterns:

 Push / Pull

 one-to-many connection, one-to-one

messaging

 Publish / Subscribe

 one-to-many connection and messaging

Goals:

Design of a Stream Based Software Radar Architecture
Karl Cronburg (Bucknell University), Mentors: Frank Lind & Robert Schaefer (MIT Haystack)

 Passive Radar Prototype:

 ZeroMQ Object Transport:

 Stream data directly from instruments to signal processing and

analysis systems

 Dynamic scaling of computation and storage resources

 Event-based control of processing and analysis systems

 Plug-and-play message distribution

 Automatic system configuration for various tasks

 Robust data / object formats for:

 Radar frequency voltages

 Metadata

 Status, logging, and debugging events

Tools:
 Redhat Enterprise Linux Operating Environment

 Python Implementation

 GNU C Based Instruments

 ZeroMQ Sockets Library (python binding)

 Gevent – deterministic python event-based threading

 YAML (Yet Another Markup Language)

 MessagePack Object Serialization

 PyCUDA GPU Acceleration

 Numpy & Scipy Scientific Analysis Tools

 Matplotlib Plotting

 HDF5 Data Storage

YAML Object Definition:
This project primarily focused on the design and

implementation of a YAML-based Interface Definition

Language (IDL) used for defining composite objects with

named attributes.

YAML object definition provides…

 A human readable data format

 Easily listen to / debug data streams

 Non-programmer understandable object composition

 Implementation agnostic object definitions

 Use any YAML-aware programming language

 A highly capable yet robust object format

 Capable of default attribute values

 Handles all basic data types (strings, floats, ints, etc)

 Numpy aware

 Automatic construction of composite data types
Figure 1 – Example object definition for RF voltage data and

corresponding metadata.
Figure 2 – Example usage of the dynamic object instantiation, serialization, and

streaming capabilities of various python modules written for this project.

Object Serialization:
Formats:

 YAML – slow but human-readable serialization for message stream debugging

 MessagePack – fast & compact serialization for on-the-wire data transmission

 HDF5 – object storage in a consistent scientific data format

Features:

 On-the-fly deserialization – dynamic loading of object definitions from revision control

 ‘Pickle’ like syntax for loading and dumping objects

 Optional gzip compression

Example serialization usage shown in Fig. 2.

Thanks to

 Frank Lind for giving clear specifications and assistance

 Robert Schaefer for implementation guidance

 Phil Erickson, Vincent Fish, and KT Paul for organizing the REU

 The MIT Haystack staff for support throughout the summer

The primary objective of this project is to collect, analyze, and

process Radar data with live streaming and viewing capabilities using

existing and future processing and analysis components.

The work I undertook towards this goal involved setting up the

architecture for defining data objects apart from Radar processing

implementations, and further serializing these objects for transport over

networks.

A similar architecture being designed is Ocean Observatories

Initiative (OOI) Cyberinfrastructure, for dynamically collecting and

distributing Ocean-related data.

Person

 name = Bob

 age = 22

!Person: {name : ‘Bob’, age : 22}

'\x83\xa3age\x16\xa6__type\xa6Person\xa4name\xa3Bob'
Serialize

YAML

msgpack

HDF5
(binary)

The ZeroMQ sockets library provides elastic / scalable plug-and-play style messaging.

Pusher

Puller 1

Puller 2

Puller 3

msg 2

PUB

SUB 1

SUB 2

SUB 3

msg 1,2,3

 Request / Reply – one-to-one connection

and messaging

Features Implemented:

 Automatic object (de)serialization

 Debugging / re-routing message filters

 Optional hash-based integrity verification

 Clean messaging interface (see Fig. 2)

Replier

REQ 1

REQ 2

REQ 3

REQ/REP 2

 Runtime Results:

Figure 3 – Average message rate using MessagePack serialization (with and without compression),

broken up by task. Small (126 – 512 byte messages) were used.

This Project:

