
Messaging Patterns: 

  Push / Pull 

 one-to-many connection, one-to-one 

messaging 

 

 

 

 

 

  Publish / Subscribe 

 one-to-many connection and messaging 

 

 

 

 

 

 

Goals: 

Design of a Stream Based Software Radar Architecture 
Karl Cronburg (Bucknell University), Mentors: Frank Lind & Robert Schaefer (MIT Haystack) 

 Passive Radar Prototype: 

 ZeroMQ Object Transport: 

  Stream data directly from instruments to signal processing and 

analysis systems 

  Dynamic scaling of computation and storage resources 

  Event-based control of processing and analysis systems 

  Plug-and-play message distribution 

  Automatic system configuration for various tasks 

 Robust data / object formats for: 

 Radar frequency voltages 

 Metadata 

 Status, logging, and debugging events 

Tools: 
 Redhat Enterprise Linux Operating Environment 

 Python Implementation 

 GNU C Based Instruments 

 ZeroMQ Sockets Library (python binding) 

 Gevent – deterministic python event-based threading 

 YAML (Yet Another Markup Language) 

 MessagePack Object Serialization 

 PyCUDA GPU Acceleration 

 Numpy & Scipy Scientific Analysis Tools 

 Matplotlib Plotting 

 HDF5 Data Storage 

YAML Object Definition: 
This project primarily focused on the design and 

implementation of a YAML-based Interface Definition 

Language (IDL) used for defining composite objects with 

named attributes.  

 

YAML object definition provides… 

  A human readable data format 

 Easily listen to / debug data streams 

 Non-programmer understandable object composition 

 Implementation agnostic object definitions 

 Use any YAML-aware programming language 

  A highly capable yet robust object format 

 Capable of default attribute values 

 Handles all basic data types (strings, floats, ints, etc) 

 Numpy aware 

 Automatic construction of composite data types 
Figure 1 – Example object definition for RF voltage data and 

corresponding metadata.  
Figure 2 – Example usage of the dynamic object instantiation, serialization, and 

streaming capabilities of various python modules written for this project. 

Object Serialization: 
Formats: 

  YAML – slow but human-readable serialization for message stream debugging 

  MessagePack – fast & compact serialization for on-the-wire data transmission 

  HDF5 – object storage in a consistent scientific data format 

 

 

 

 

 

Features: 

  On-the-fly deserialization – dynamic loading of object definitions from revision control 

  ‘Pickle’ like syntax for loading and dumping objects  

  Optional gzip compression 

Example serialization usage shown in Fig. 2. 

Thanks to 

  Frank Lind for giving clear specifications and assistance 

  Robert Schaefer for implementation guidance 

  Phil Erickson, Vincent Fish, and KT Paul for organizing the REU 

  The MIT Haystack staff for support throughout the summer 

The primary objective of this project is to collect, analyze, and 

process Radar data with live streaming and viewing capabilities using 

existing and future processing and analysis components. 

 

The work I undertook towards this goal involved setting up the 

architecture for defining data objects apart from Radar processing 

implementations, and further serializing these objects for transport over 

networks. 

 

A  similar architecture being designed is Ocean Observatories 

Initiative (OOI) Cyberinfrastructure, for dynamically collecting and 

distributing Ocean-related data. 

Person 

 name = Bob 

 age = 22 

!Person: {name : ‘Bob’, age : 22} 

'\x83\xa3age\x16\xa6__type\xa6Person\xa4name\xa3Bob' 
Serialize 

YAML 

msgpack 

HDF5 
(binary) 

The ZeroMQ sockets library provides elastic / scalable plug-and-play style messaging. 

Pusher 

Puller 1 

Puller 2 

Puller 3 

msg 2 

PUB 

SUB 1 

SUB 2 

SUB 3 

msg 1,2,3 

 

  Request / Reply – one-to-one connection 

and messaging 

 

 

 

 

 

 

 

 

Features Implemented: 

  Automatic object (de)serialization 

  Debugging / re-routing message filters 

  Optional hash-based integrity verification 

  Clean messaging interface (see Fig. 2) 

Replier 

REQ 1 

REQ 2 

REQ 3 

REQ/REP 2 

 Runtime Results: 

Figure 3 – Average message rate using MessagePack serialization (with and without compression), 

broken up by task. Small (126 – 512 byte messages) were used. 

This Project: 




