Low Cost GPS Synchronization for Distributed Instrument Arrays

Gavin McCauley

UMass Boston

Mentors: Jim Marchese, Frank Lind MIT Haystack REU 2012

Goal

Implement a low cost coherent oscillator
 Programmable output frequency
 Stabilized by a GPS 1-Pulse Per Second reference signal

- Lower cost, smaller size, and higher flexibility than commercial solutions
- Such signals are critical for synchronizing digital receivers in distributed radio arrays

Project History

- Started from a REU project last year, continued intermittently afterwards
- Focusing on setting up hardware and beginnings of software for coherence module
- Now focusing on making the PIC and main component functional enough to generate a valid output for testing

Components of Coherence Module

- PIC microcontroller
- AD9548 clock-generating and clocksynchronizing chip
- Temperature Sensor
- DAC
- SRAM

Workings of Coherence Module

AD9548 Synchronization Chip

Stable Oscillator

Development

- Fixed previous test code and established control of all components
- Program the AD9548 chip with register settings known to produce a valid output
- Poll status registers in infinite loop and display lock status using LEDs

Testing

- Symmetricom device used with 5 MHz reference signal from hydrogen maser (very stable)
- Records frequency at a specified time per second and creates stability-related plots, such as Allan deviation (explained on next slide), to be retrieved in a file
- Run several tests with different profile settings to see effects

Allan Deviation

- Measures quality of signal; stability
- Depends on the time period used between samples
- Cannot be represented by one single measurement at any time, a graph is needed over time

$$\sigma_{y}^{2}(\tau) = \frac{1}{2} \langle (\Delta y)^{2} \rangle$$

Coherence Module Prior to Tuning

Tuning Test Cases

- Change one AD9548 loop parameter at a time
- Due to time constraints could only run each test for an hour, giving Allan Deviation data up to 10³ seconds instead of 10⁵

Best Case

Fractional Stability

Application

- Once the best case was found, the output frequency was adjusted to 72 MHz and put into Frank Lind's system for radio signal receiving tests
- Changing from 10 MHz to 72 MHz was a change of two register settings!

Intercepted Signals for Ionospheric Science

Dartmouth

Haystack

ISIS Array Data (Commercial)

ISIS Array Data (Coherence Module)

Conclusions & Future

- Module can output signals stabilized to GPS
- Output frequency of coherence module is close to commercial quality
- Keep testing loop filter conditions to find better performance
- Upgrade hardware (better crystal oscillator could be worth extra cost in long run)

Acknowledgements

Mentors
Jim Marchese
Frank Lind
Haystack Community
NSF