Daily Variations of Lower Thermospheric Tides at Middle Latitude and Their Association with Sudden Stratospheric Warming Events

Rebecca Steeves
Larisa Goncharenko

MIT Haystack Observatory REU
North Carolina State University

August 8, 2013
Atmospheric Tides

- Oscillations present in the atmosphere
- Two distinct types
 - Migrating
 - Non-Migrating
- Major periods:
 - 24h, 12h, 8h
- Largely driven by thermal forcing
 - Ozone
 - Water vapor
- Amplitude increases with increasing height

Model output from NCAR/HAO for the Global Scale Wave Model
The Missing Piece

The ITM System

SSW

Solar Heating

Wind Dynamo

ITM System

0 km

Pole

Equator

500 km

60 km
The Missing Piece

The ITM System

- Wind Dynamo
- Solar Heating
- O3
- solar-driven tides
- H2O

- E
- B

500 km

60 km

SSW

0 km

Pole

Equator
The Missing Piece

The ITM System

Magnetospheric Coupling
Energetic Particles
Ion Outflow

500 km

E

Polar/Auroral Dynamics
Mass Transport
Joule Heating
Solar Heating

Wind Dynamo

ITM System

E
B

Turbulence
Convective Generation of Gravity Waves & Tides

SSW

NO
O3
CO2
CH4

Planetary Waves
H2O

0 km

Pole
Equator

Wave Generation

CO2 Cooling

500 km
Importance of the Mid-Latitudes

- Modeling efforts show an increase in semi-diurnal (SD) tide globally
 - Maximum Increase at Mid-Latitudes
 - Important altitude range: 100-120km

- Millstone Hill ISR
 - Located at 42°N
 - Ideal altitude range
 - Only instrument to provide this type of data

Pedatella et al. 2012
Data Used in This Study

- Data utilized from Millstone Hill ISR (42.6°N, 288.5°E) & NCEP
 - Winds
 - Stratospheric Characteristics
- Altitude Range – 100-124km
 - 3km increments
- SSW Events
 - January 17-February 1, 2008
 - January 26-30, 2009
- Non-SSW Events
 - January 20-23, 2007
 - November 8-9, 2007
 - December 11-21, 2007

10hPa Temperature from January 2008
SSW
Methodology

- Winds calculated from Millstone ISR data
- Quality Control
 - Large Errors & Wind Speeds
 - Local Sunset times
- Lomb-Scargle Spectral Analysis
 - Time limitation
 - Tides: 12 hour & 6 hour
- Least Squares Fit to determine Amplitude & Phase
- Campaign Comparison

Zonal wind and tidal characteristics for Jan. 27, 2009
Meridional Wind, 12-h Amplitudes

- Comparable in strength & variability
 - December 07: 133 m/s
 - January 08: 152 m/s
 - January 09: 152 m/s

Expectation:
Distinct increase in amplitude

Our Results:
- Both wind components show an increase in max amplitudes
- Increase is case dependent.
- Large variability in all campaigns
Meridional Phases

- Large distinction between phases:
 - **Non-SSW**, Dec 2007: phases consistent
 - **SSW**, Jan08: difference of 10 hrs
 - **SSW**, Jan09: difference of 5 hrs

- Oscillating structure of shorter vertical wavelength of about 4/5 days

- Difference in phase indicates tides with different vertical wavelength (different tidal modes)
Zonal Mean Winds

The SSW zonal mean winds show a westward shift overall when compared to non-SSW events.

- Disagreement with model predictions

Padetella et al 2013; In Press
No large difference between zonal and meridional wind

Day-to-day variability

2/3 day oscillation

Quadiurnal tide shows significant presence in all the campaigns.
Summary

- Winds were derived from ISR Data at Millstone Hill and fit with dominant tidal modes to determine lower thermospheric tidal characteristics.
- Large day-to-day variability is present for all campaigns.
- Dominant tides are the semidiurnal (12-h) and quadiurnal (6-h) tides.

Major differences between non-SSW and SSW data:
- Maximum 12-h amplitudes may show increase (stronger in 2009), but large variability proves too large of a factor.
- Phase variability larger in the SSW campaigns.
- SSW zonal mean winds show westward shift overall.

Future Work
- Expand to include more campaigns
- Analyze possible teleconnection
- More Data (both non-SSW and SSW)!
Acknowledgements

- Larisa Goncharenko for amazing guidance and teachings
- Phil Erickson, Vincent Fish, & K.T. Paul for all the effort and time put into making the program run smoothly
- Everyone who has made our time enjoyable at the REU
- NSF for an amazing opportunity
Any Questions?