
Adaptive GPU-Accelerated Software Satellite Beacon
Processing for Geospace Environmental Sensing

John Grasel - Harvey Mudd College
MIT Haystack REU Summer 2010

Initialize

Serial Parallel

FFT

Frequency Domain Filter

Signal Tracking

Hilbert Transform

Time Domain Filter

Mix Preparation

Mixer

Decimate

Initialize

Time Domain Filter

FFT

FD Filter

Tracking

Hilbert Coefs

Coe�cient Generation

Mix Preparation

Mixer

Decimate

CPU - Python GPU - CUDA

Abstract

Introduction

Design

Instantaneous Bandwidth

Ephemeris

Preselector Filter

Hilbert Transform

Acknowledgements
Dr. Phil Erickson, Bill Rideout, Dr. Frank Lind
KT Paul, Ching Lue, and all of the Haystack Sta�

CUDA and PyCuda

Performance Results

Writing Software for the GPU

Summary

Sources
• CUDA C Programming Guide 3.1. http://developer.nvidia.com/object/cuda_3_1_downloads.html
• Guturu, Harendra. Beacon Signal Acquisition and Processing Using Software Radio. 2007.
• Ristic, Branko. Algorithms for Instantaneous Bandwidth Estimation. 1996.
• Bernhardt, Paul. New satellite-based systems for ionospheric tomography and scintillation
 region imaging. 2006.
• Martin, Kenneth. Complex Signal Processing is Not Complex. 2004.

Components

Satellite Pass

Doppler Shift

IonosphereBeacon

Scintill
atio

n

Processing Cores: 448
Single-Precision Performance: 1.03 TFlops

Memory: 3GB DDR5
Transfer Bandwidth: 144 GB/s

Radio beacons on satellites can be used in conjunction with ground receivers to study the
ionosphere. The flexibility of new wideband tuners and digital receiver platforms requires a
modular, adaptable software chain to optimally process and interpret beacon over�ight data. A
python-based system was developed to track the beacon, �lter noise, and convert the signal to
baseband. The slow and intrinsically parallel nature of the process led to large performance
gains when methods were ported to the Graphical Processing Unit (GPU) using a Python
wrapper of NVIDIA's CUDA programming language. This poster will discuss methodologies to
port algorithms to GPU execution as well as show results for representative beacon overflights
in the Westford, MA vicinity.

The large-scale structure ionosphere
consists of layers of ions and electrons,
but within these are small-scale regions
of irregular electron density. These
density structures cause RF (radio
frequency) signals propagating through
them to experience random changes in
amplitude and changes in phase, called
scintillations. Atmospheric scientists
use satellite beacon signals to study
scintillation, the amplitude and phase
variation of a radio signal imposed by ionospheric variations. Scintillation causes a loss of signal
integrity which directly affects Global Positioning System (GPS) and the High Frequency (HF)
communication band signals. In addition, electron density information, a key component of
space weather, can be extracted from scintillation data.

The recording and processing of beacon
data is done with a beacon chain because
of its linked but modular nature. As a
satellite beacon like the 150 MHz beacon
on DMSP F15 transits overhead, its
frequency is Doppler-shifted. The RF

signal is converted into electrical current by an antenna. The signal is mixed to an frequency (IF)
and filtered around the beacon frequency. The analog to digital converter (ADC) samples the
analog signal, and the digital receiver downsamples the signal to a lower frequency. The data is
fed into an Ethernet backend, where a network computer begins the software signal processing.

Too much data is collected from a satellite
pass to process it all at once, so a Beacon
Block represents a portion of the data. The
voltage data is stored in a two-dimensional
array whose rows contain voltage data. The
width of the Beacon Block, along with the
sample rate, thus determines frequency and
time resolution.

A passing satellite beacon results
 in a dopper shift and scintillation

Layout of the Beacon Chain

NVIDIA Tesla GPU

The traditional process for studying scintillation has been through dedicated hardware, but
faster computers and powerful scienti�c libraries have allowed more work to be shifted to
software written in Python. In addition to decreasing development time, the use of software
allows for data processing to be highly configurable. Not only can software be cloned easily, but
advances in computer hardware will increase software’s performance with little or no work to
the programmer. Finally, in software, data can be reprocessed or processed with using
 con�gurations.

A measure of the width of frequencies in a
signal. Used as an indicator of when the
beacon is no longer being tracked.

The expected frequency of the satellite
over time is calculated to �lter noise
sources before peak tracking. The software
package PyEphem was used to calculate
the satellite positions, and the frequencies
were derived from these.

The satellite beacon is tracked via a method
called Dynamic Programming (DP). The
spectrogram of the signal is considered as a
three-dimensional surface, the line tracking the
peak is the one that stays at the highest power
for the longest time. DP allows for this line to be
calculated in n-squared time, and it lets other
parameters such as the results of previous
Beacon Blocks increase the accuracy of the
tracking. In addition, the calculation yields a
con�dence indicator that accurately indicates
the instantaneous strength of the tracked signal.

Peak Tracking

A Finite Impulse Response (FIR) bandpass
�lter removes signal components around
the tracked peak. An FIR �lter’s output is a
weighted sum of the current and a �nite
number (known as the order) of previous
values of the input. The weights are
generated using a SciPy package. A higher
order �lter has sharper rollo�, but it
requires more computation and has
increased delay.

The FIR �lter selects both positive and
negative frequencies, so a Hilbert
Transform removes the negative frequency
components. This performs the transform
in the frequency domain.

Mixer

Decimation

Multiplying a signal of known frequency by a
complex exponential of opposite frequency
centers the signal on baseband.

Integer downsampling, or the selection of the
�rst sample out of every M points, reduces the
signal’s bandwidth by a factor of 1/M.

Unlike the CPU, which specializes in logic and program flow, the
GPU is specialized for compute-intensive, highly parallel
computation. CUDA is a C-subset designed to give the
programmer access to the GPU’s features in an easily- scalable
manner. Functions are called kernels, and one kernel runs on
the GPU at a time. A kernel runs on a 2-D grid of blocks. Each
block is a 3-D container for threads. Threads within a block
share local memory and can easily be synchronized. Blocks are
required to be executable in any order. The kernel code is
written for an arbitrary thread in an arbitrary block, and CUDA
executes the kernel for each thread in each block in parallel.

PyCuda is a Python wrapper for the CUDA C library. It opens all of the CUDA library to Python
bindings, and includes other convenient features:
• GPUArrays, which are like Numpy arrays that can be passed directly to CUDA functions
• Automatic GPU-accelerated element-wise math for GPUArrays, like scalar and vector
 products and trig functions
• Simple syntax for Elementwise Kernels and Reductions

Although many of the functions in the center were easily ported to the GPU, some functions
had to be completely reworked to be parallelizable. For example, the CPU mixer iterates along
the data keeping track of the signal’s phase, but the GPU has to precalculate phases.

Porting individual functions to the GPU resulted in modest speedups eroded by slow memory
transfer between the CPU and GPU. The GPU-enabled processing is 70% faster than the CPU
 version, and it processes data at over 600,000 samples per second.

• Prototyping applications in Python makes debugging easier
• Converting code from Python map, reduce and list comprehensions to Cuda is simple – write a
Kernel that works on one element, and ensure the thread and block dimensions span your data
• Must have enough parallel elements to make memory transfers worthwhile
• Practically no existing CUDA libraries except for FFT
• Metaprogramming, or Python code that writes CUDA kernels as they are needed, speeds
 execution without sacrificing readability
• Avoid as much code branching, which includes conditionals, as possible

A working con�gurable software radio processor was developed in Python and accelerated with
PyCuda. The peak tracking with Dynamic Programming proved very e�ective, and the use of
PyCuda sped up the processing to a rate 6 greater than necessary to perform real-time signal
processing. CUDA is simple and powerful enough language to become mainstream in
data-intensive applications, and PyCuda is a very e�ective way to access it.

