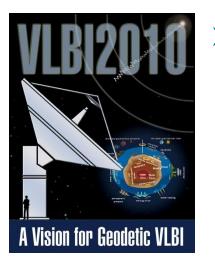
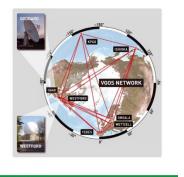
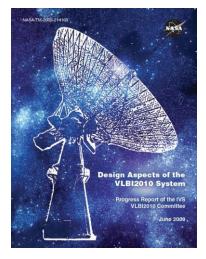


Realization Status of VGOS Infrastructure Buildout


Dirk Behrend

NVI, Inc./NASA GSFC, Greenbelt, MD, USA


11th IVS Technical Operations Workshop May 3–5, 2021



Radio Science	
AN AGU JOURNAL	

- IVS Working Group 3: Final Report
 - https://ivscc.gsfc.nasa.gov/about/wg/wg3/IVS_WG3_report_050916.pdf
 - September 2005
 - Vision document
 - VGOS Technical Committee (VTC): Progress Report
 - <u>https://ivscc.gsfc.nasa.gov/technology/vgos-docs/TM-2009-214180.pdf</u>
 - June 2009
 - Definition of specifications
- Radio Science: Technical Report
 - https://doi.org/10.1029/2018RS006617
 - September 2018
 - Overview of VGOS system

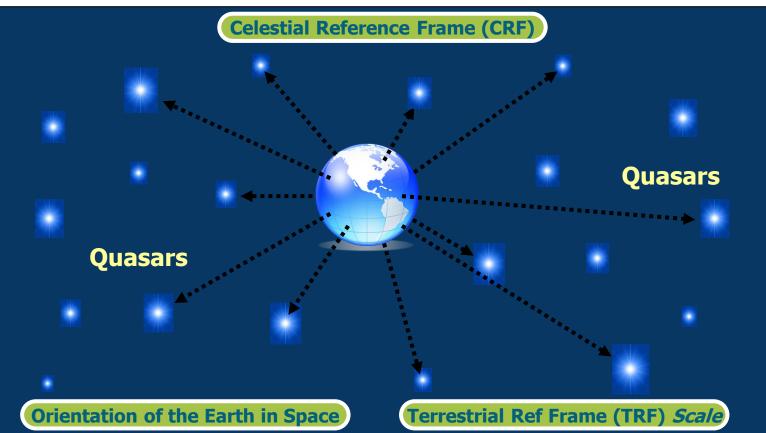
The International VLBI Service for Geodesy and Astrometry (IVS)

is an international collaboration of organizations which operate or support Very Long Baseline Interferometry (VLBI) components:

- > IVS inauguration was on **1 March 1999**.
- > 83 permanent components supported by
 - 41 institutions in 21 countries.
- ➤ ~300 Associate Members.

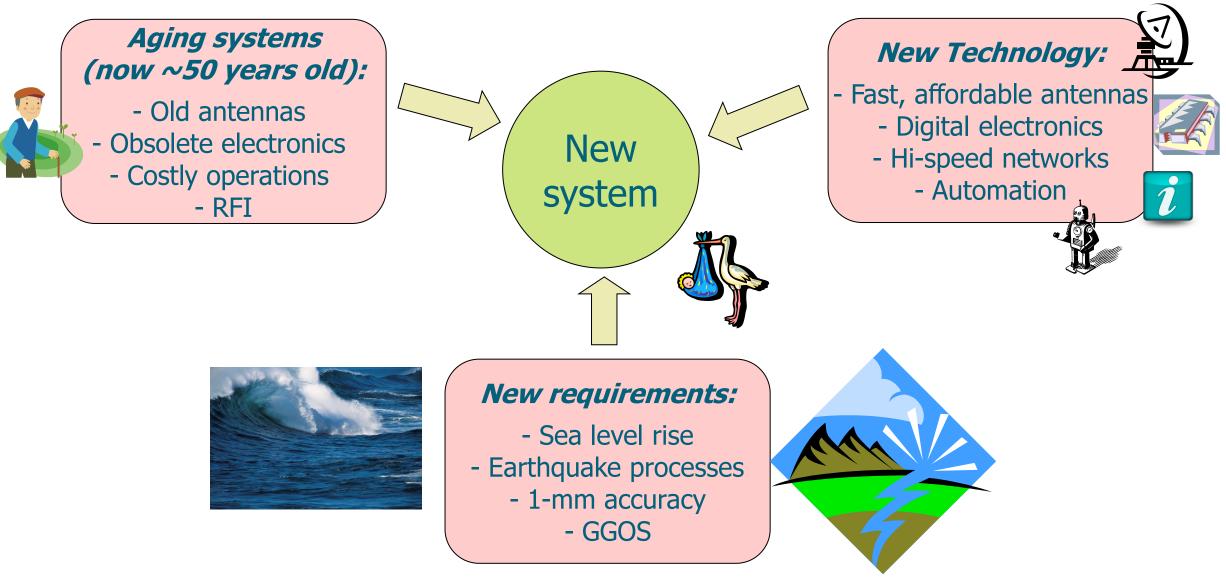
IVS is a recognized service of

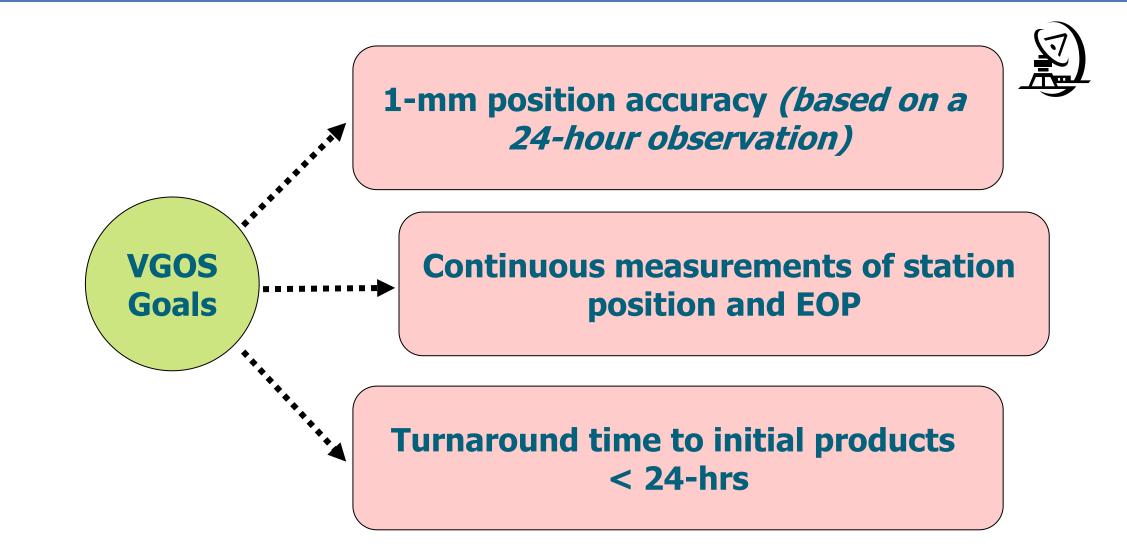
- IAG International Association of Geodesy
- **IAU** International Astronomical Union
- WDS ISC World Data System

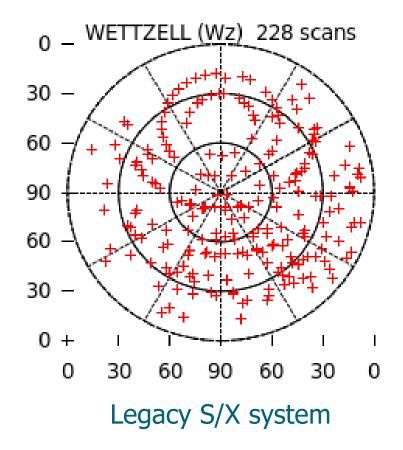


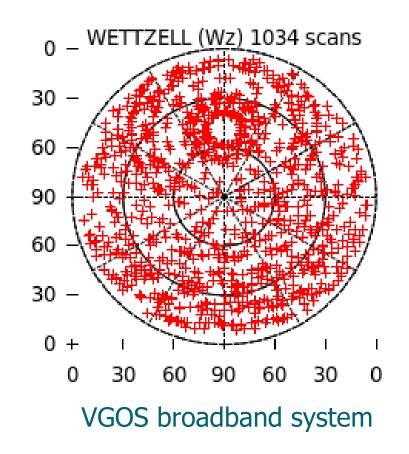
- Earth Orientation Parameters (EOP):
 - 24-hour sessions (all EOP)
 - 1-hour Intensives (UT1–UTC)

- Terrestrial Reference Frame (TRF)
- Celestial Reference Frame (CRF)


- Daily EOP + station coordinates (SINEX files)
- > Tropospheric Parameters
- Baseline Lengths

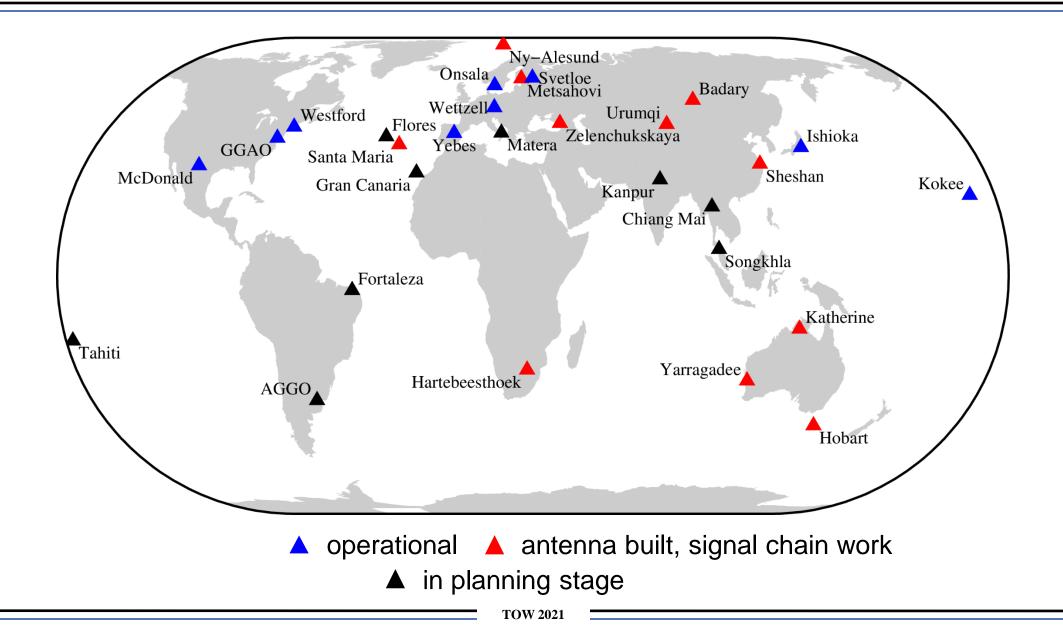

VGOS: Why a New System





 dense sampling of local sky for optimal estimation of atmosphere parameters

	Legacy S/X System	VGOS System	Benefit
Antenna size	5–100 m dish	12–13 m dish	reduced cost
Slew speed	~20-200 deg/min	≥ 360 deg/min	more observations for troposphere
Sensitivity	200–15,000 SEFD	≤ 2,500 SEFD	more homogeneous
Frequency range	S/X band [2 bands]	~2–14 GHz [1 broadband w/ 4 bands]	increased sensitivity, data precision
Recording rate	128, 256, 512 Mbps	8, 16, 32 Gbps	increased sensitivity
Data transfer	usually e-transfer, some ship disks	e-transfer, ship disks when required	
Signal processing	analog/digital	digital	stable instrumentation



Courtesy R. Haas

Evolution of the VGOS Network

VGOS observing in 2019:

- VGOS Test (VGOS-T) sessions
 - One 24-hour session every 2 weeks, correlation at MIT Haystack Observatory
 - Databases made available at IVS data centers (e.g., CDDIS)

VGOS observing in 2020:

- VGOS Operational (VGOS-O) sessions
 - One 24-hour session every 2 weeks, correlation at MIT Haystack Observatory
 - Officially operational sessions, databases at IVS data centers
- > VGOS Intensive (V2) sessions
 - (Starting in late February) one 1-hour session every 2 weeks, alternating with VGOS-O sessions
 - Correlation at MIT Haystack Observatory, databases at IVS data centers

Developer:

- MIT Haystack Observatory
- Correlation and fringe fitting process based on DiFX software correlator

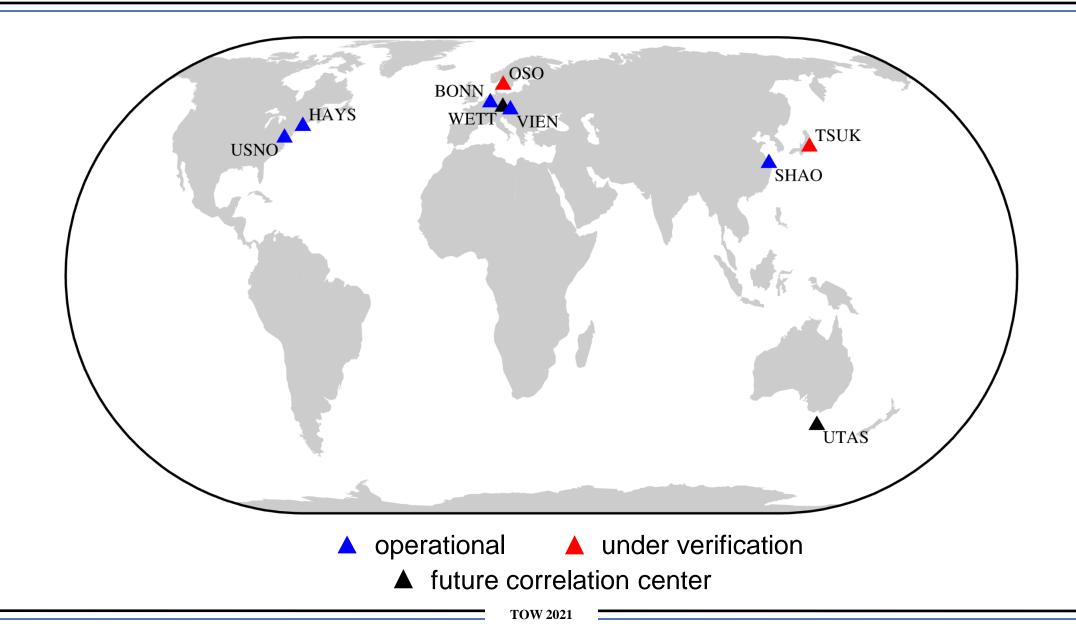
Knowledge transfer:

- Correlation workshop in May 2019
 - Transfer procedures, software versions, lessons learned to other centers to increase
 VGOS observing frequency
- Follow-up workshop in 2020 (postponed due to COVID-19)
- Correlation comparisons using benchmark data sets (1-hour, 24-hour)

Verification of correlators:

- Bonn, Shanghai, USNO, and Vienna (plus Tsukuba and Onsala)
 - Each correlator has unique data transport challenges
 - Accepts disk modules, e-transfer only, limited network capacity
- Hands-on "blind-test" correlation with 1-hour VGOS Intensive session
 - Starting at raw data level
 - Verified that results agree within margin of errors
 - Needed iteration

- Final verification w/ operational 24-hour VGOS session (VGOS-O: VO0009)
 - Bonn end-to-end from raw level
 - All other correlators start at postcorrelation level (due to challenges w/ data transport of huge raw data)
 - Verified and validated VGOS correlation end-to-end process
 - Bonn, USNO started w/ operational sessions in 2020; VIEN, SHAO followed in 2021
- All verification results are published in <u>Haystack memo series</u>


"Mixed-mode" correlation:

- Simultaneous observing with VGOS and S/X stations in same network
- Important for tying the VGOS frame to the S/X frame
- Three R&D sessions observed in summer of 2020; two now correlated and contributed to ITRF2020
- Correlation VGOS-VGOS, S/X-S/X, and VGOS-S/X
- Mixed-mode correlator workshop directly following TOW2021

Rollout of VGOS Correlation Capabilities

Data storage requirements:

- Legacy S/X VLBI: ~2000 TB/year
- > Typical 24-hour VGOS session (2020):
 - 8 stations
 - 50 TB/day/station of raw data
 - ~400 TB/day
- > Network size to grow to 16–20 stations
 - for 20 stations: ~1000 TB/day
 - full year (24/7/365): ~360 PB/year
- **Data transport (electronic transfer):**
- Required network data rates:
 - each site: 5.6 Gbps
 - correlator: 134 Gbps

Station	Bandwidth now (sustained)	Transfer time for 50 TB of data
GGAO	1 Gbps	4 .75 days
Westford	1 Gbps	4 .75 days
Wettzell	4 Gbps	1.2 days
Yebes	5 Gbps	0.95 days
Ishioka	1 Gbps	4 .75 days
Kokee Park	0.1 Gbps	47.50 days
Onsala	6 Gbps	0.8 days
McDonald	0.3 Gbps	15.8 days

Note:

Kokee was recently upgraded to 1 Gbps

> Typical weekly layout for IVS observing sessions

UT	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Monday																								
Tuesday				R1																				
Wednesday					T2,	EUF	RO,	OHI	G, A	PSC	9, Al	JS												
Thursday						CR	F, A	US,	RD	/, R8	&D													
Friday							R4																	
Saturday																								
Sunday																								
			=	= IN	T1 ((Inte	nsive	e ses	ssior	n Ko	kee-	Wet	tzell)										
			- 100	= IN	T2 (Inte	nsive	e ses	ssior	n Ts	ukub	a-W	ettz	ell)										
				= IN	T3 ((Inte	nsive	e ses	ssior	ר Ny	Ales	und	Tsu	kuba	a-We	ettze	ell)							

> about 180 sessions per year, 3.5 sessions per week

Expected weekly observing coverage for VGOS (after 2020)

UT	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Monday																								
Tuesday																								
Wednesday																								
Thursday																								
Friday																								
Saturday																								
Sunday																								
		С	onst	ant	obse	ervati	ion v	vith	16+	stat	ion n	etwo	ork											
		In	ndivic	lual	stati	ons	have	e ma	inter	nanc	e da	iys												

> 365 sessions per year, 7 sessions per week (24/7/365)

Comparison of VGOS Intensive and legacy S/X Intensive results w.r.t. IERS Bulletin B:

- The VGOS-B data show both the smallest uncertainties, a small bias, as well as the best agreement in terms of RMS and STD.
- Based on 11 sessions only, but very encouraging

Series	$\sigma_{ m mean}$	$\sigma_{ m median}$	RMS	Bias	STD
All BKG INT1/INT2	14.8	14.2	32.9	14.3 ± 3.4	29.6
All GSF INT1/INT2	15.1	13.2	28.3	-2.0 ± 3.2	28.2
All USN INT1/INT2	14.6	12.9	28.4	8.5 ± 3.1	27.1
All GIS INT2	13.5	9.2	33.6	10.2 ± 6.7	32.0
All IAA INT1/INT2	15.0	12.2	27.8	5.0 ± 3.6	27.3
All OSO INT1/INT2	16.5	15.4	31.0	4.5 ± 3.6	30.6
OSO VGOS-B	4.5	4.2	23.2	-3.8 ± 7.2	22.9
Simultaneous OSO INT1	16.0	14.2	28.4	-0.8 ± 9.0	28.3
Simultaneous BKG INT1	17.3	16.1	32.9	8.4 ± 10.1	31.8
Simultaneous GSF INT1	18.8	16.8	24.2	-7.6 ± 7.3	23.0
Simultaneous USN INT1	14.3	14.4	27.9	5.4 ± 9.1	27.4

From: Haas et al. Earth, Planets and Space (2021) 73:78

- VGOS network expansion to 24+ stations in next few years
- > Use numerous correlators to go to higher cadence VGOS sessions
- Increase data storage and data transfer capacities at stations and correlation facilities
- > Tie VGOS TRF to legacy S/X TRF using mixed-mode sessions (VGOS–S/X)
- > Further avenues of improvement:
 - instrumentation development (e.g., bandwidth doubling)
 - atmosphere modeling
 - radio source structure
- Transition IVS production system from legacy VLBI to VGOS
- Eventual 24/7 observing

Ny Ålesund Twin Telescope

Inauguration event on 6 June 2018