VLBI/VGOS Basics

Pedro Elosegui, MIT Haystack Observatory

With big thanks to very many of you "out there"

Outline for today

• Motivation: WHY do we do VLBI?

- Hands-on: HOW do we do VLBI?
 - Geodetic radio telescopes
 - VLBI vs. GPS concept
 - Station requirements
 - VLBI digitization
 - VLBI correlation

MIT HAYSTACK OBSERVATORY

Why VLBI?

CLIMATE CHANGE IS THE DEFINING CHALLENGE OF OUR TIME

Rapid polar changes: Arctic sea ice loss

[NSIDC/NASA]

Rapid polar changes: Ice sheet mass loss

[Smith et al., 2020]

Rapid terrestrial water storage changes since 2000

Rapid polar motion changes since 2000

[Adhikari et al., 2016]

Rapid global sea level rise

Why VLBI?

CLIMATE CHANGE IS THE DEFINING CHALLENGE OF OUR TIME

- Climate needs geodesy, geodesy needs VLBI/VGOS, VGOS needs you collecting the very best quality data you can.
- While staying humble, the contribution of each one of you (of us all, really) is terribly important.
- But please do not panic if you miss one scan, one session, something bigger; reflect, learn, connect, come back stronger.

Outline for today

Motivation: WHY do we do VLBI?
Climate change is the defining challenge of our time.

• Hands-on: HOW do we do VLBI?

- Geodetic radio telescopes
- VLBI vs. GPS concept
- Station requirements
- VLBI digitization
- Correlation
- Geodetic post-processing and VGOS precision

HAYSTACK OBSERVATORY

WESTFORD RADIO

What is VLB ... A/I?

Quasar

What is VLB ... I? Very Long Baseline Interferometry

Noise

Hydrogen maser clock (accuracy 1 sec in 1 million years)

High speed data link

Correlator

High speed data link

Radio Telescope

Noise

VLBI Global Observing System (VGOS) "today"

See TOW session: Behrend

VGOS virtues (vs. "legacy") in a nutshell

Broad bandwidth (better sensitivity)

Basic elements of VLBI (geodesy)

- Antennas
- Receivers
- Analog and digital stages
- Recorders and data transport
- Correlation, post-processing
- Imaging, positioning, orientation

VLBI (VGOS) station

The Geodetic Measurement

Quasar

Noise

Geometric delay $au_g = ec{B} . \hat{s} / c$

High-precision geodetic science

Observation = Model + Error

$$\tau = \tau_g + \tau_{clk} + \tau_{ion} + \tau_{trop} + \tau_{inst} + \tau_{rel} + \tau_{other} + \epsilon$$

Signal (geometry => position, orientation) rest is all "noise"

GNSS

DORIS

Practical VLBI observational goals

High-precision geodesy means observable with small error

$$\sigma_{\tau} = \frac{1}{2\pi} \cdot \frac{1}{SNR\,\Delta\nu}$$

• Sensitivity = ability to "see" faint objects (interferometer, Jy)

$$\Delta S = \frac{1}{\eta_s} \cdot \sqrt{\frac{SEFD_i \cdot SEFD_j}{2\,\Delta\nu\,\tau_{acc}}}$$

See TOW session: Lindqvist, Varenius

• Resolution = ability to "see" details in distant objects

What determines sensitivity?

- Amount of energy collected (Ta, gain, efficiency)
 - Size and quality of the collecting area
 - but cost of bigger antennas tends to increase as D^2.7 (i.e., doubling antenna diameter raises price by ~6!)
 - Bandwidth of the energy spectrum
 - sensitivity improves as square root of observed bandwidth, cost effective
- Quietness of the receiving detectors (Tsys)
 - many receivers are already approaching quantum noise limits, or are dominated by atmospheric noise

MIT HAYSTACK OBSERVATORY

A few resolution examples

100 m telescope at λ =1cm (30 GHz) \rightarrow ~20 arcsec

VLA (~35 km) at λ =1cm \rightarrow ~0.1 arcsec (~2 km on moon; ~2 m at 5000 km)

10,000 km telescope at λ =1cm \rightarrow ~200 micro-arcsec (~40 cm on moon; ~5 mm at 5000 km)

10,000 km telescope at λ =1mm \rightarrow ~20 micro-arcsec (~4 cm on moon; ~0.1 m at 1000 km)

Geodetic VLBI radio sources

- VLBI geodesy requires sources that are bright, compact, and "stable" both in time and frequency; a challenge
- The total number of available useful sources for current geodetic-VLBI capabilities is small (<~1000)
- VGOS, with its improved sensitivity, should significantly improve the number of available sources

Principle of (geodetic) VLBI/VGOS

- Measure time-ofarrival difference (delay) accurately
- mm-level positioning
 requires delay
 precision of a few
 picoseconds (3 ps = 1 mm)

VGOS station requirements

- Observing "noise" from quasars (contaminated by various noise sources)
- Measuring a (group) delay (a time measurement), whose resolution is inversely of spanned bandwidth
 - Requires wideband feeds and receivers (VGOS 2-14 GHz)
 - Multi-band systems to correct for ionosphere delays
 - Low-noise receivers (low SEFD, antenna efficiency, cryogenics)
 - Antennas that are small, efficient, and fast (atmosphere)
 - High-speed recording for high SNR via large bandwidth (Nyquist)
 - Hydrogen maser frequency standards
 - Accurate time synchronization (to ~300 nsec with GPS time)
 - Instrumental calibrations (cable delays and phase calibration)

Log Time (sec)

Allen Variance

Legacy S/X vs. VGOS comparison

	Legacy S/X	VGOS	
Antenna Size	5–100 m dish	~ 12 m dish	
Slew Speed	~20–200 deg/min	≥ 720 deg/min	
Sensitivity	200–15,000 SEFD	≤ 2,500 SEFD	
Frequency Range	S/X band	~2–14 GHz	
Recording Rate	128, 256 Mbps	8–16 Gbps	
Data Transfer	Usually ship disks, some e-transfer	Both e-transfer and disks	

See TOW session: Behrend

What is the recorded VGOS data?

Answer: precisely timed samples of noise, usually nearly pure white, Gaussian noise!

Interesting fact: normally, the voltage signal is sampled with only 1 or 2 bits/sample

- Big consequence, it is near incompressible
- But also another important consequence, it is not a big deal to lose a small amount of data

- The spectrum of a Gaussian-statistics bandwidth limited signal may be completely reconstructed by measuring only the sign of the voltage at each Nyquist sampling point (Van Vleck 1960)
- Relative to infinite bit sampling, VLBI SNR at 1 and 2 bits/sample is only 63% and 87%, respectively, better compensated by increasing recording bandwidth

Cross-correlation of weak signals

Correlation is product and accumulation, pulling signal from the noise:

$$(s + n_1) (s + n_2) = s^2 + n_1 s + n_2 s + n_1 n_2$$

(Earth rotation adds complexity because causes time-of-arrival difference and Doppler shift to continually change)

Combine channels via "bandwidth synthesis"

The goal is to measure the group delay, defined as $d\theta/d\omega$

First, we must measure the observed fringe-phase difference for each of the observed frequency channels:

For a given delay, the higher the fringe frequency, the greater time-rate change in phase:

Observables for each baseline-scan:

- Correlation Amplitude
- Correlation Phase (generally 2π ambiguous)
- Total Group Delay
- Total Delay Rate
- All tied to a precise UT epoch

See TOW session: Haftings, Sargent

High-precision geodetic science

Observation = Model + Error

$$\tau = \tau_g + \tau_{clk} + \tau_{ion} + \tau_{trop} + \tau_{inst} + \tau_{rel} + \tau_{other} + \epsilon$$

Signal (geometry => position, orientation) rest is all "noise"

GNSS

DORIS

Living on a dynamic Earth

The ensemble of observables from an experiment are only useful if a detailed and highly sophisticated model of the Earth and its messy motions exists

MIT HAYSTACK OBSERVATORY

Modeling the dynamic Earth

Adapted from Sover et al., (1998)

Item	Approx Max.	Time scale
Zero order geometry.	6000 km	1 day
Nutation	~ 20 "	< 18.6 yr
Precession	$\sim 0.5 \text{ arcmin/yr}$	years
Annual aberration.	20"	1 year
Retarded baseline.	20 m	1 day
Gravitational delay.	4 mas @ 90° from sun	1 year
Tectonic motion.	10 cm/yr	years
Solid Earth Tide	50 cm	12 hr
Pole Tide	2 cm	$\sim 1 \text{ yr}$
Ocean Loading	2 cm	12 hr
Atmospheric Loading	2 cm	weeks
Post-glacial Rebound	several mm/yr	years
Polar motion	0.5 arcsec	~ 1.2 years
UT1 (Earth rotation)	Several mas	Various
Ionosphere	$\sim 2 \text{ m at } 2 \text{ GHz}$	All
Dry Troposphere	2.3 m at zenith	hours to days
Wet Troposphere	0-30 cm at zenith	All
Antenna structure	<10 m. 1cm thermal	
Parallactic angle	0.5 turn	hours
Station clocks	few microsec	hours
Source structure	$5~\mathrm{cm}$	years

VGOS precision

VGOS positioning precision

[Niell et al., 2018]

MIT

HAYSTACK

OBSERVATORY

4 cm

VGOS network rollout Ny-Alesund Onsala Svetloe Metsahovi Badary Wettzell Westford Urumqi Flores Ishioka Zelenchukskaya GGAO Yebes Matera Santa Maria Sheshan McDonald Gran Canaria Kokee, Kanpur Chiang Mai Songkhla Fortaleza Katherine Tahiti Yarragadee Hartebeesthoek AGGO Hobart See TOW session: MIT operational **antenna built, signal chain work** HAYSTACK Behrend ▲ in planning stage OBSERVATORY

VGOS vs. VLBI S/X positioning precision

MIT

Improved Terrestrial Reference Frame and EOP

In summary

- WHY we do VLBI/VGOS
 - Climate change is the defining challenge of our time
- HOW we do it
 - Geodetic radio telescopes
 - VLBI vs. GPS concept
 - Station requirements
 - VLBI digitization
 - Correlation
 - Geodetic post-processing and VGOS precision

HAYSTACK OBSERVATORY

And that's pretty much it for today

Have all a healthy, productive, holly-jolly TOW!

