Science Overview

2021 Virtual TOW Meeting Karine Le Bail Onsala Space Observatory Chalmers University of Technology

Science Overview

2021 Virtual TOW Meeting Karine Le Bail Onsala Space Observatory Chalmers University of Technology *Credit Video:* Onsala Space Observatory Roger Hammargren

IVS products

Terrestrial Reference Frame

Celestial Reference Frame

Earth Orientation Parameters

International Earth Rotation and Reference Systems Service

Soja, 2019 IUGG General Assembly

IVS products

Terrestrial Reference Frame IVS-T2, RDV

Celestial Reference Frame

Earth Orientation Parameters

Terrestrial Reference Frame Factors that affect Earth's shape

International Terrestrial Reference Frame ITRF2014

- Positions and velocities
 1499 stations located at
 975 sites (158 VLBI sites
 204 VLBI stations)
- Contributions from VLBI, GPS, SLR/LLR, and DORIS
 - VLBI: scale of TRF, nutation, UT1-UTC;
 - GPS: polar motion, densification;

30

-30°

- SLR/LLR: center of mass, scale of TRF;
- DORIS: global coverage.

Altamimi et al. 2016, JGR-SE

Tsukuba example

Altamimi et al. 2016, JGR-SE

Altamimi et al. 2016, JGR-SE

Analysis Impact of missing meteorological data IVS station Zelenchukskaya during CONT08

The IVS contribution to ITRF2020 in numbers

• **11** institutions

• 8 countries

Italy, Germany, USA, Russia, Norway, France, Sweden, Austria

• 7 software packages

Calc/Solve, DOGS-RI, PORT, QUASAR, Where, ASCOT, VieVS

• More than 6,500 S/X 24-hr sessions

August 1979 to December 2020

• Up to 38 VGOS sessions

December 2017 to October 2020

Institution	Contacts	Software	S/X	VGOS
ASI CGS	Roberto Lanotte	Calc/Solve	6466	38
BKG	Anastasiia Girdiuk	Calc/Solve	6084	38
DGFI-TUM	Matthias Glomsda	DOGS-RI	6456	38
GFZ Potsdam	Kyriakos Balidakis	PORT	6514	38
NASA GSFC	Dan MacMillan John Gipson	Calc/Solve	6469	38
IAA	Sergey Kurdubov Svetlana Mirinova Elena Skurikhina	QUASAR	6490	23
Norwegian Mapping Authority	Ann-Silje Kirkvik	Where	6468	38
Paris Observatory	Sebastien Lambert	Calc/Solve	6481	38
Onsala Observatory	Rüdiger Haas	ASCOT	6519	38
TU-Wien	Johannes Böhm	VievS	6391	38
USNO	Megan Johnson	Calc/Solve	5931	-

This list was last updated on 2021Feb10. It reflects the session list as of 2021Jan15.

Credit: https://ivscc.gsfc.nasa.gov/IVS_AC/IVS-AC_ITRF2020.htm

IVS products

Terrestrial Reference Frame

Celestial Reference Frame IVS-CRF, IVS-CRDS, RDV

Earth Orientation Parameters

International Celestial Reference Frames ICRFs

Parameter	ICRF1 (1997)	ICRF2 (Jan 1, 2010)	ICRF3 (January 1, 2019)			
	optical frame		S/X-band	K-band	X/Ka-band	
Observation Dates	08/1979 – 07/1995 (16 years)	08/1979 – 03/2009 (29.5 years)	08/1979 – 03/2018 (38.5 years)	05/2002-05/2018	07/2005-01/2018	
# Observations	1.6M S/X group delays	6.5M S/X group delays	~15M S/X group delays			
# Defining Sources	212	295	303	193	176	
Total Sources	608	3,414	4,536	824	678	
Noise Floor	~250 µas	~40 µas	~30 µas	30-50 µas	~30 µas	

-75°

Charlot et al., A&A, 2020

0.0

Celestial Reference Frames – Radio vs. optical Link between the VLBI CRF (ICRF3) and Gaia CRF (GCRF)

Beginning of the dedicated Gaia transfer R&D sessions and introduction of the sources in the Goddard monitoring program

Credit image: Paris Observatory Geodetic VLBI Center

VLBI in the news The Event Horizon Telescope (EHT) and the black hole in M87

Credit Image: MIT Haystack Observatory website

https://www.haystack.mit.edu/astronomy/astronomy-projects/event-horizon-telescope/

VLBI IVS observations of M87 (1228+126)

Credit image: Paris Observatory Geodetic VLBI Center

Credit image: The Bordeaux VLBI Image Database

Source structure effect in broadband observations

Residuals for baselines of the stations GGAO12M, ISHIOKA and KOKEE12M Bolotin et al., 2019 EVGA

IVS products

Terrestrial Reference Frame

Celestial Reference Frame

Earth Orientation Parameters: precession-nutation, polar motion, d(UT1-UTC) *IVS-R1, IVS-R4, RDV, IVS-INT1, IVS-INT2, IVS-INT3*

Celestial Pole Offsets Precession and nutation

Source: <u>https://eos.org/</u> adapted from J. Huart, European Space Agency

UT1 Length Of Day (LOD)

Source: https://hpiers.obspm.fr/eop-pc/earthor/

Pedro Elosegui, 2021 Virtual TOW "Climate change is the defining challenge of our time."

Swollen with the rains of the 1983 El Niño, the Santa Cruz River roils near Tucson, Arizona. (Photograph courtesy of Peter L. Kresan, University of Arizona/U.S. Geological Survey.)

Credit: https://earthobservatory.nasa.gov/features/ElNino

In April 2016, nearly 8,000 tons of sardines died and washed up along the coast of Chile, likely the result of El Niño related changes in the ocean. (Photographs courtesy of Armada de Chile.)

El Niño-Southern Oscillation (ENSO) Strong El Niño event in November/December of 2015

December 2015 compared to 1981-2010 Difference from average temperature (°F)

Climate.gov/NNVL Data: Geo-Polar SST

El Niño-Southern Oscillation (ENSO) and the Multivariate ENSO Index (MEI)

Year

MEI.v2

Comparison of the Length Of Day measured by VLBI and the El Niño-Southern Oscillation

Credit: Rüdiger Haas

Summary

Better understanding of our planet VLBI as a reference

Future VGOS ICRF, source structure, source flux density monitoring,...

Tack så mycket!

More videos? SGP @GSFC/NASA <u>https://space-</u> geodesy.nasa.gov/multimedia/videos/vlbi_quasars/VLBIQuasarsVideo.html Quest for the Exact Position https://vimeo.com/324592652

Credit Image: Onsala Space Observatory This Roger Hammargren

This presentation uses contents from previous Science Overview talks.