

Mixed-Mode Data Processing Overview

J. Barrett, M. Titus, B. Corey, A. Niell, R. Cappallo, P. Elosegui, C. Ruszczyk, D. Mondal

MIT Haystack Observatory

May 6, 2021

Overview

Basic steps are roughly the same as VGOS

- Observation
- Correlation and phase-cal. extraction
- Post-processing (Fringe-fitting and calibration)
- Cable delay calibration (*proxy* cable-cal. if needed)
- Database Generation
- \star However, there are important caveats at each step, to deal with:
 - Correlating with zoom-bands
 - Fringe-fitting two separate bands (S/X) rather than 4-bands combined.
 - Forming mixed linear-circular polarization products.

Correlation

Basic Elements

- Station data and logs
- Configuration (.vex)
- Configuration (.v2d)
- Zoom-bands are needed!
- Setting clocks
- No sampler delays*
- Running DiFX
- Running difx2mark4*
- Correlation products include 4-varieties:
 - Legacy-legacy baselines
 - Legacy-VGOS baselines
 - VGOS-VGOS baselines (as SX)
 - VGOS-VGOS baselines as full broad-band. (VGOS à la VGOS)

Data Flow

Post-correlation processing

Basic Elements

- Apply any pre-corrections needed (e.g. RFI notches, pc_tonemask, channel deletions.).
- Determine if/which stations need manual p-cal.
- Correct non-linear phases separately across S and X band.
- Compensate for phase/delay differences between Y-X polarizations at VGOS stations separately for both S and X band.
- Form the baseline-dependent polarization-products:
 - RR for legacy-legacy
 - RX+RY or XR+YR for VGOS-legacy (-P option order matters!)
 - Pseudo-Stokes-I for VGOS-VGOS (as SX)

Data Flow - Done 2x (S and X band).

Cable-calibration (for VGOS stations)

Basic Elements

- Essentially the same as VGOS-processing.
- For stations with hardware cable-calibration
 - Extract cable-delay directly from station logs.
- For VGOS stations needing proxy-cable calibration
 - Best to extract cable delay estimates from VGOS (broad-band) data (more tones for fit).
 - Fit phase-cal. data to estimate delays for each band-polarization.
 - Select band-pol. and then average delays.

Database Generation

Basic Elements

- Legacy-SX and VGOS data differ in how dTEC is treated.
- For VGOS (broad-band), effect of dTEC is removed during fringe-fitting
- Whereas for legacy the X-band delay is corrected via the S-band delay (analysis).
- Full utilization of session data requires two separate DB's for the legacy-SX/mixed-mode data and VGOS (broad-band) data.
- In both cases: extract and convert Mk4 type-2 data: vgosDbMake.
- Append delay model: vgosDbCalc.
- Import station log and then (proxy) cable-calibration data: vgosDbProcLogs.

Data Flow

- Data quality needs to be monitored throughout the process.
- At the correlation stage, we are mainly concerned with:
 - Data format, configuration and frequency setup for zoom bands.
 - Station clocks
- At the post-processing stage, we are mainly concerned with:
 - tuning channel phase corrections (all stations)
 - station phase-cal behavior (manuals can be used when needed)
 - 'notching' out RFI and common p-cal tones on short baselines as needed.
 - phase/delay offsets between polarizations (only at VGOS-stations)

Putting it all together

