Haystack AeroVista REU

Hirani Sattenapalli, Aparna Rajesh, T. Lucas Briggs

"Aurora Touching Sunrise" from NASA archives

AERO VISTA Mission Introduction

AERO VISTA Payload

Antenna after Deployment →

- AERO & VISTA satellites will collect radio frequency (RF) data from the auroral regions
- Data will be used to accomplish science and tech goals
 - Study emissions such as Auroral Kilometric Radiation (AKR), Medium Frequency Burst (MFB), Auroral Roar, and Auroral Hiss
 - Validate usage of Vector Sensor
 Interferometry and RFI survey

Monopole, Horizontal Loop, and Rectangular Dipoles correspond to channels on spectrogram

Slide from Mary Knapp AERO-VISTA presentation 2021

Ground Station Radio Communications

T. Lucas Briggs

What is a Ground Station?

- Enables communication between spacecraft and mission operations
- Handles all radio operatio command scheduling, and data verification tasks

Source:

https://www.gim-international.com/content/news/pasco-provides-rental-service-for-satellite-ground-stati on-facilities

For AERO/VISTA

- Multiple possible Ground Stations in different locations with a wide range of radio configurations
- Many different types of data with varying sizes of payload
 - <u>Commands</u>: small, carries data necessary for spacecraft to execute desired action.
 - <u>Acknowledgements</u>: very small, carries data necessary to say "command received"
 - <u>Telemetry</u>: large, carries as much information as possible about spacecraft state
 - <u>Science</u>: very large, carries a full time-series of spectrum data from auroral emissions

Digital Communications over Radio

Summary of Requirements

Need a software package that...

- Enables framing/deframing and mod./demod. on uplink/downlink.
- Allows for a wide range of data payload lengths.
- "Drops in". Can be imported, started, and maintained anywhere.
- Provides a way to access data remotely and asynchronously.
- Is as configurable as possible
- Is as extendable as possible

Implementation - GNURadio Flowgraph

Implementation - Software (simplified)

- <u>Database</u> provides asynchronous remote access.
- <u>Ground Station</u> provides configuration, handles top-level operation.
- <u>Radio Interface</u> manages framing/deframing data, uplinking/downlinking frames.
- <u>Flowgraph</u> operates the Radio Transceiver.

MIT

HAYSTACK

OBSERVATORY

Implementation - Software (simplified)

- <u>Database</u> provides asynchronous remote access.
- <u>Ground Station</u> provides configuration, handles top-level operation.
- <u>Radio Interface</u> manages framing/deframing data, uplinking/downlinking frames.
- <u>Flowgraph</u> operates the Radio Transceiver.

MIT

HAYSTACK

OBSERVATORY

13

Live Demo -PNG File Transfer

Next Steps

- Interaction of the Ground Station with the Database needs to be expanded
 - Operation commands, logging, configuration, and satellite command scheduling, all remote-asynchronous
- GNURadio Flowgraph needs to be expanded
 - More/better signal processing for higher SNR (configurable)
- Develop a "mock satellite" version of the Ground Station
 - Responds to known commands with dummy data
 - Potentially applies a channel model to the signal to test non-ideal conditions
- Integrate with a real transceiver and satellite engineering model

backup

Implementation - Software (expanded)

- Radio Interface exists as 3 important blocks
- Each has a single responsibility, promotes extendability
- See report for more details

Modulation and Framing for A/V

- Modulation using Gaussian Frequency Shift Keying (GFSK)
 - Looks a bit like this: $\begin{array}{c} 0 & 1 & 0 & 1 & 1 & 0 \\ \hline & & & \\ \end{array} \xrightarrow{} 0 & 1 & 0 & 1 & 1 & 0 \\ \hline & & & & \\ \end{array} \xrightarrow{} 0 & 1 & 0 & 1 & 1 & 0 \\ \hline & & & & \\ \end{array}$
- Flexible data framing with the following template:

Reliable Data Transfer: Framing

- <u>Preamble</u>: recognize symbols, "lock on" to binary data
- <u>Syncword</u>: find the start of the data packet
- <u>Length</u>: how many bytes to expect in the data
- <u>Address</u>: where should this data go

- <u>CRC (Cyclical Redundancy Check)</u>: Verify that the data has not changed
- <u>Whitening</u>: Deterministically randomize the data

Configuration Through YAML Files

Configurable parameters are categorized into "packet", "radio", and "redis" groupings

! defa	ault_txrx.yml M ×
AV-Sat	tellite-Communications > satcom > ! default_txrx.yml
1	packet:
2	formatter: "default"
3	preamble: "1010010011110010" # ""
4	syncword: "10101100110111010010011100010111100101000110000
5	whiten: True
6	whitener_offset: 0
7	crc: True
8	
9	radio:
10	center_frequency: 2450000000
11	sample_rate: 500000
12	samples_per_symbol: 4
13	rx_gain: 40.0
14	tx_gain: 40.0
15	<pre># These addresses can be the same (sat-in-the-loop test)</pre>
16	<pre>rx_usrp_address: "serial=3094DF7"</pre>
17	<pre>tx_usrp_address: "serial=3094E05"</pre>
18	# These addresses must be different
19	<pre>rx_socket_address: "tcp://127.0.0.1:50000"</pre>
20	<pre>tx_socket_address: "tcp://127.0.0.1:50001"</pre>
21	receive_waits_s: [0.1, 1, 3, 5]
22	<pre>max_payload_bytes: 512</pre>
23	
24	redis:
25	host: "localhost"
26	port: 6379
27	db: 0
28	<pre>pkt_uplink_stream_name: "pkt-uplink"</pre>
29	<pre>pkt_downlink_stream_name: "pkt-downlink"</pre>
30	clear on start: True

Digital Communications: Modulation

- Binary data representation on a "constant wave", accomplished through **keying**
 - Amplitude-Shift Keying (ASK)
 - Frequency-Shift Keying (FSK)
 - Phase-Shift Keying (PSK)
 - ...many more
- Our solution: Gaussian FSK (GFSK)
 - FSK with no sudden jumps

Thank you to our mentors

Mary Knapp, Ryan Volz, John Swoboda, Frank Lind, Phil Erickson, Toby Gedenk, and Geoff Crew

