Haystack AeroVista REU

Hirani Sattenapalli, Aparna Rajesh, T. Lucas Briggs

"Aurora Touching Sunrise" from NASA archives

AERO VISTA Mission Introduction

AERO VISTA Payload

- AERO & VISTA satellites will collect radio frequency (RF) data from the auroral regions
- Data will be used to accomplish science and tech goals
 - Study emissions such as Auroral
 Kilometric Radiation (AKR), Medium
 Frequency Burst (MFB), Auroral Roar,
 and Auroral Hiss
 - Validate usage of Vector Sensor
 Interferometry and RFI survey

Monopole, Horizontal Loop, and Rectangular Dipoles correspond to channels on spectrogram

Slide from Mary Knapp AERO-VISTA presentation 2021

AERO-VISTA Interactive Spectrogram Display

Hirani Sattenapalli

AVIS Display & Objectives

- Provide a tool for the science team to visualize metadata
- Present spectrogram data in plotly graphs
- Allow science team to perform computation on channel data and send commands for in-flight processing

Libraries Used

- Plotly
 - Graphing utility used for telemetry maps and spectrogram plots
- Redis
 - In-memory data structure used to store metadata
- Digital RF
 - Software used for reading and writing spectrogram metadata into digital RF format

Libraries Used

pandas

ΜΙΤ

- Dash
 - Python framework to build web pages
 - Used to build and style layout and components of the dashboard
- Numpy
 - python library to work with arrays and matrices
- Xarray
 - python package that adds dimensions and coordinates to
 - numpy arrays
 - used to organize metadata to place into redis

Existing AVIS Display

Goals for Dashboard Version 2.0

- Faster Loading of Data
 - Updating the spectrogram by retrieving and processing the summary data files presents a high computational load
- Display of Telemetry Data
 - Spacecraft speed, location, and altitude
 - Used to provide context for science team
- Generation of Subplots to do computation between channels
- Overall Design Changes to increase visual & user interactibility

File Structure

AVIS Version 1

- Metareader used to read summary data file
- Metatime provides timestamp data
- Specmeta creates spectrogram plot
- Util creates dash components for the display

File Structure

AVIS Version 2.0

- Specmeta and Metareader files replaced with Specdata file
- Specdata:
 - used to enter summary data into redis for in-memory storage
- App.py files
 - Split into index.py, app.py, & app pages to accommodate multi-page dash app
 - Easier for future additions

Demo

Summary of New Layout & Results

- App.py structure & index.py
 - Allows for easy addition of future improvements
- Redis interface & backend structure
 - Enters all spectrogram and time data into redis
 - Meant for future collaboration between Lucas and Aparna's work
 - Access files in redis and send uplink files into redis
- Speed
 - In memory storage of data did not speed up spectrogram plot generation as desired
 - Data input to redis makes it easier for data to be accessed and exported in the future

Summary of New Layout & Results Cont.

- Telemetry data page
 - Provides a data table of satellite speed, position/ location, & altitude
 - Provides context for science team when analyzing spectrogram data
- Subplots page
 - Continuous regeneration of spectrogram plots to use for computation between different channels (ex. sum(loops), mult(dipoles), division, linear combinations)
 - Used to classify if data is showing electrostatic or electromagnetic phenomena & type of emission

Future Work

- Computation between channels

- Currently there is subplot generation; computation for channel math needs to be developed
- Improvements on redis structure
 - Data organization in redis and improvements on file access
- Satellite video/ display in home page
 - Future satellite data to be presented on the home page

Citations

Erickson, et al. "AERO: Auroral Emissions Radio Observer". *In: Conference on Small Satellites*. Aug. 2018. url: https://digitalcommons.usu.edu/smallsat/2018/all2018/453

Knapp, Mary. "AERO-VISTA and Low Frequency Radio Astronomy." Haystack Observatory, July 2021.

Langford, Drew. (2020). "The AERO-VISTA Interactive Spectrogram Display: An Original Software Solution for Scientific Operations of Twin 6U CubeSats"

Frank Lind, et al. "AERO & VISTA: Demonstrating HF Radio Interferometry with Vector Sensors". In: *Small Satellite Conference, Upcoming Missions, SSC19-WKV-09.* Aug.2019.

Volz, R., Rideout, W. C., Swoboda, J., Vierinen, J. P., & Lind, F. D. (2021). Digital RF (Version 2.6.6). MIT Haystack Observatory. Retrieved from https://github.com/MITHaystack/digital_rf

Zell, Holly. "Aurora Video GALLERY." *NASA*, NASA, 10 Apr. 2015, www.nasa.gov/mission_pages/sunearth/aurora-videos/index.html.

Satellite Commanding API

Aparna Rajesh

Commanding?

- Once in orbit, satellites must maintain a connection with ground systems
- Example tasks:
 - Ping
 - File transfer
 - Data collection
- Commands are sent up via the uplink & a response is sent back via the downlink

Goals

- Develop an API (Application Programming Interface, an intermediary software that takes data from a different software and then sends it to another API or program) that will:
 - neatly package command data and metadata
 - serialize all the information pertaining to a command or command schedule in a predetermined format
 - human readable format
 - hex format for the spacecraft
 - pass this byte stream to another program

AV-Command-Schedule-API

- The AV-Command-Schedule-API:
 - creates a command object with using instance-specific parameters and other data stored in config files
 - establishes a command "connection" using a connection modifier
 - where will this command be sent?
 - generates a human-readable component of the command object
 - generates a hex stream that is to be read by the spacecraft

C 22 commits		₽ 1 branch
Branch: master -	New pull reque	st
💼 arajesh added	aur command para	m dict
AV-Commandi	ng	added aur command param di
pycache		cleaned directories & more me
ill old		cleaning up files & adding com
README.md		Initial commit

AV-Command-Schedule-

API for processing and serializing commands and cc

Next Steps

- Command schedules
- Hex headers
- Command dictionary parameter data types
- Config files

Ground Station Radio Communications

T. Lucas Briggs

What is a Ground Station?

- Enables communication between spacecraft and mission operations
- Handles all radio operation, command scheduling, and data verification tasks

Source: https://www.gim-international.com/content/news/pasco-provides-rental-service-for-satellite-ground-station-facilities

For AERO/VISTA

- Multiple possible Ground Stations in different locations with a wide range of radio configurations
- Many different types of data with varying sizes of payload
 - <u>Commands</u>: small, carries data necessary for spacecraft to execute desired action.
 - <u>Acknowledgements</u>: very small, carries data necessary to say "command received"
 - <u>Telemetry</u>: large, carries as much information as possible about spacecraft state
 - **<u>Science</u>**: very large, carries a full time-series of spectrum data from auroral emissions

Digital Communications over Radio

Summary of Requirements

Need a software package that...

- Enables framing/deframing and mod./demod. on uplink/downlink.
- Allows for a wide range of data payload lengths.
- "Drops in". Can be imported, started, and maintained anywhere.
- Provides a way to access data remotely and asynchronously.
- Is as configurable as possible
- Is as extendable as possible

Implementation - GNURadio Flowgraph

Implementation - Software (simplified)

- <u>Database</u> provides asynchronous remote access.
- <u>Ground Station</u> provides configuration, handles top-level operation.
- <u>Radio Interface</u> manages framing/deframing data, uplinking/downlinking frames.
- <u>Flowgraph</u> operates the Radio Transceiver.

Implementation - Software (simplified)

- <u>Database</u> provides asynchronous remote access.
- <u>Ground Station</u> provides configuration, handles top-level operation.
- <u>Radio Interface</u> manages framing/deframing data, uplinking/downlinking frames.
- <u>Flowgraph</u> operates the Radio Transceiver.

Live Demo -PNG File Transfer

Next Steps

- Interaction of the Ground Station with the Database needs to be expanded
 - Operation commands, logging, configuration, and satellite command scheduling, all remote-asynchronous
- GNURadio Flowgraph needs to be expanded
 - More/better signal processing for higher SNR (configurable)
- Develop a "mock satellite" version of the Ground Station
 - Responds to known commands with dummy data
 - Potentially applies a channel model to the signal to test non-ideal conditions
 - Integrate with a real transceiver and satellite engineering model

backup

Implementation - Software (expanded)

- Radio Interface exists as 3 important blocks
- Each has a single responsibility, promotes extendability
- See report for more details

MIT HAYSTACK OBSERVATORY

Modulation and Framing for A/V

- Modulation using Gaussian Frequency Shift Keying (GFSK)

 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O<
- Flexible data framing with the following template:

Reliable Data Transfer: Framing

- <u>Preamble</u>: recognize symbols, "lock on" to binary data
- <u>Syncword</u>: find the start of the data packet
- <u>Length</u>: how many bytes to expect in the data
- <u>Address</u>: where should this data go

- <u>CRC (Cyclical Redundancy Check)</u>: Verify that the data has not changed
- <u>Whitening</u>: Deterministically randomize the data

Configuration Through YAML Files

Configurable parameters are categorized into "packet", "radio", and "redis" groupings

! defau	lt_txrx.yml M ×
AV-Sate	llite-Communications > satcom > ! default_txrx.yml
1	packet:
2	formatter: "default"
3	preamble: "1010010011110010" # ""
4	syncword: "1010110011011101001001011100010111100101
5	whiten: True
6	whitener_offset: 0
7	crc: True
8	
9	radio:
10	center_frequency: 2450000000
11	sample_rate: 500000
12	<pre>samples_per_symbol: 4</pre>
13	rx_gain: 40.0
14	tx_gain: 40.0
15	# These addresses can be the same (sat-in-the-loop test)
16	<pre>rx_usrp_address: "serial=3094DF7"</pre>
17	<pre>tx_usrp_address: "serial=3094E05"</pre>
18	# These addresses must be different
19	rx_socket_address: "tcp://127.0.0.1:50000"
20	<pre>tx_socket_address: "tcp://127.0.0.1:50001"</pre>
21	receive_waits_s: [0.1, 1, 3, 5]
22	<pre>max_payload_bytes: 512</pre>
23	
24	redis:
25	host: "localhost"
26	port: 6379
27	db: 0
28	<pre>pkt_uplink_stream_name: "pkt-uplink"</pre>
29	<pre>pkt_downlink_stream_name: "pkt-downlink"</pre>
30	clear on start: True

Digital Communications: Modulation

- Binary data representation on a "constant wave", accomplished through keying
 - Amplitude-Shift Keying (ASK)
 - Frequency-Shift Keying (FSK)
 - Phase-Shift Keying (PSK)
 - ...many more
- Our solution: Gaussian FSK (GFSK)
 - $\circ~$ FSK with no sudden jumps

Final Group Demo

Thank you to our mentors

Mary Knapp, Ryan Volz, John Swoboda, Frank Lind, Phil Erickson, Toby Gedenk, and Geoff Crew

