Haystack AeroVista REU

Hirani Sattenapalli, Aparna Rajesh, T. Lucas Briggs

"Aurora Touching Sunrise" from NASA archives

AERO VISTA Mission Introduction

AERO VISTA Payload

- AERO & VISTA satellites will collect radio frequency (RF) data from the auroral regions
- Data will be used to accomplish science and tech goals
 - Study emissions such as Auroral
 Kilometric Radiation (AKR), Medium
 Frequency Burst (MFB), Auroral Roar,
 and Auroral Hiss
 - Validate usage of Vector SensorInterferometry and RFI survey

Monopole, Horizontal Loop, and Rectangular Dipoles correspond to channels on spectrogram

Slide from Mary Knapp AERO-VISTA presentation 2021

AERO-VISTA Interactive Spectrogram Display

Hirani Sattenapalli

AVIS Display & Objectives

- Provide a tool for the science team to visualize metadata
- Present spectrogram data in plotly graphs
- Allow science team to perform computation on channel data and send commands for in-flight processing

Libraries Used

- Plotly
 - Graphing utility used for telemetry maps and spectrogram plots
- Redis
 - In-memory data structure used to store metadata
- Digital RF
 - Software used for reading and writing spectrogram metadata into digital RF format

Libraries Used

pandas

- Dash
 - Python framework to build web pages
 - Used to build and style layout and components of the dashboard
- Numpy
 - python library to work with arrays and matrices
- Xarray
 - python package that adds dimensions and coordinates to
 - numpy arrays
 - used to organize metadata to place into redis

Existing AVIS Display

Goals for Dashboard Version 2.0

- Faster Loading of Data
 - Updating the spectrogram by retrieving and processing the summary data files presents a high computational load
- Display of Telemetry Data
 - Spacecraft speed, location, and altitude
 - Used to provide context for science team
- Generation of Subplots to do computation between channels
- Overall Design Changes to increase visual & user interactibility

File Structure

AVIS Version 1

- Metareader used to read summary data file
- Metatime provides timestamp data
- Specmeta creates spectrogram plot
- Util creates dash components for the display

File Structure

AVIS Version 2.0

- Specmeta and Metareader files replaced with Specdata file
- Specdata:
 - used to enter summary data into redis for in-memory storage
- App.py files
 - Split into index.py, app.py, & app pages to accommodate multi-page dash app
 - Easier for future additions

Demo

Summary of New Layout & Results

- App.py structure & index.py
 - Allows for easy addition of future improvements
- Redis interface & backend structure
 - Enters all spectrogram and time data into redis
 - Meant for future collaboration between Lucas and Aparna's work
 - Access files in redis and send uplink files into redis
- Speed
 - In memory storage of data did not speed up spectrogram plot generation as desired
 - Data input to redis makes it easier for data to be accessed and exported in the future

Summary of New Layout & Results Cont.

- Telemetry data page
 - Provides a data table of satellite speed, position/ location, & altitude
 - Provides context for science team when analyzing spectrogram data
- Subplots page
 - Continuous regeneration of spectrogram plots to use for computation between different channels (ex. sum(loops), mult(dipoles), division, linear combinations)
 - Used to classify if data is showing electrostatic or electromagnetic phenomena & type of emission

Future Work

- Computation between channels

- Currently there is subplot generation; computation for channel math needs to be developed
- Improvements on redis structure
 - Data organization in redis and improvements on file access
- Satellite video/ display in home page
 - Future satellite data to be presented on the home page

Citations

Erickson, et al. "AERO: Auroral Emissions Radio Observer". *In: Conference on Small Satellites*. Aug. 2018. url: https://digitalcommons.usu.edu/smallsat/2018/all2018/453

Knapp, Mary. "AERO-VISTA and Low Frequency Radio Astronomy." Haystack Observatory, July 2021.

Langford, Drew. (2020). "The AERO-VISTA Interactive Spectrogram Display: An Original Software Solution for Scientific Operations of Twin 6U CubeSats"

Frank Lind, et al. "AERO & VISTA: Demonstrating HF Radio Interferometry with Vector Sensors". In: *Small Satellite Conference, Upcoming Missions, SSC19-WKV-09.* Aug.2019.

Volz, R., Rideout, W. C., Swoboda, J., Vierinen, J. P., & Lind, F. D. (2021). Digital RF (Version 2.6.6). MIT Haystack Observatory. Retrieved from https://github.com/MITHaystack/digital_rf

Zell, Holly. "Aurora Video GALLERY." *NASA*, NASA, 10 Apr. 2015, www.nasa.gov/mission_pages/sunearth/aurora-videos/index.html.

