GEMINI at Haystack

Isaac Wright The University of Texas at Dallas

Dr. John Swoboda, Dr. Larisa Goncharenko, Dr. Shunrong Zhang, Prof. Matthew Zettergren¹

¹ Embry-Riddle Aeronautical University

GEMINI (Geospace Environment Model of Ion-Neutral Interactions)

- Three-dimensional ionospheric fluid-electrodynamic model.
 - Fluid system comprised of a set of three conservation equations (mass, momentum, and energy) for each ionospheric species.
 - Coupled to electrostatic description of auroral and neutral dynamo currents.
 - Generalized orthogonal coordinate system
- Applications:
 - Ionospheric responses to infrasonic-acoustic waves
 - Earthquakes, volcanic eruptions, weather events. etc.
 - Modeling auroral current systems
 - Used to drive sensor models
 - This project: Used to predict eclipse event

GEMINI Fluid Dynamics Demonstration

Test run: GEMINI response to neutral gas input (MAGIC)

...

Project Goals

- Setup capabilities for Haystack scientists to use and run GEMINI
- Explore model's capacity in producing physical features (equatorial ionization anomaly, day-night variation in ionospheric parameters, etc.)
- Case study to illustrate GEMINI capabilities
 - Modeling June 2021 annular eclipse
 - Photoionization masking
 - Larger scale simulation

Running GEMINI

- Generally, running GEMINI requires:
 - Generating input files
 - Creating configuration file. Specify inputs such as time, F107, AP, etc.
 - Spatial grid
 - Running a background state equilibrium
 - Run until non-physicalities "ring out"
 - Results interpolated as input conditions for actual simulation.
 - Redefining config, run actual simulation at higher resolution.
 - Outputs files specify pecies temperature, density, and drifts for each relevant ionospheric species (O+,NO+,N2+,O2+,N+, H+,e-) and electromagnetic parameters.

Running GEMINI on MIT Supercloud

- Supercloud
 - Shared high performance computing cluster environment available to MIT staff/students
 - GEMINI benefits from parallelization, well supported by Supercloud
 - Unlimited access up to 8 nodes w/ ~48 CPUs per node. More on request

MIT LINCOLN LABORATORY

SUPERCOMPUTING CENTER

MIT

HAYSTACK

OBSERVATORY

Equatorial Ionization Anomaly (EIA)

- Troughlike structure observed at magnetic equator due, in part, to plasma diffusion and E×B drift (fountain effect)
- Model results generally consistent with EIA, observed and modeled

GEMINI

=

Case: Global Photoionization Mask

- Can photoionization in GEMINI be modulated and produce reasonable responses?
- Sunrise enabled vs. sunrise disabled

=

Case Study: 2021 Annular Eclipse

- June 10, 2021 Annular Eclipse:
 - Coincided with sunrise
 - Eclipse mask approximated from SAMI3 modeling of 2017 total solar eclipse

Mask implemented in study

June 10, 2021: 9:50:00 UTC

Real world obfuscation Credit: Juha Vierinen

June 10, 2021 09:50:00 UTC

June 2021 Annular Eclipse: Preliminary Results

- Grid: 128 x 388 x 312 dimension=~15M grid cells spanning 900km, altitude 268-300 longitude, 35-75 latitude,
- Up to 18% decrease in electron density at 300 km after 60 minutes compared to no eclipse control simulation
 - SAMI3 found ~25% decrease in density

SAMI3 2017 total eclipse simulation

% difference electron density GEMINI

Summary & Future Work

- Contributions
 - Helped pave the way for setting up and running GEMINI simulations on MIT Supercloud
 - Explored GEMINI features and capabilities
 - Worked to simulate June 2021 annular eclipse as a case study
 - Contributed to model development (code, bug testing)
- Future work
 - More in depth eclipse analysis
 - Larger grid
 - More accurate model & ionospheric parameters
 - Drive sensor models
 - MIT Supercloud involvement with other REU projects

Acknowledgments

- Very special thanks to:
 - Dr. John Swoboda, for managing me as lead project mentor and introducing me to several software resources including Supercloud
 - Prof. Matthew Zettergren, developer of GEMINI, for instructing me on how to use GEMINI and implementation
 - Dr. Larisa Goncharenko and Dr. Shunron Zhang, for assisting in ensuring that GEMINI outputs generally corresponded to physical structures and observations
 - Dr. Phil Erikson for assisting in obtaining an MIT Supercloud account

