
Supervised Model for Gravity Wave Detection on 
Antarctic Ice Shelves

Shivansh Baveja1,2, Dhiman Mondal2, Pedro Elosegui2, Chester A. Ruszczyk2, John Barrett2

1 University of California Berkeley,  2 MIT Haystack Observatory

        Antarctic ice shelves play a pivotal role in re-
straining, buttressing, and modulating the flow of grounded ice into 
the Southern Ocean. Recent collapses of these barriers have shown 
the vital role they play in regulating sea level rise. Hypotheses ex-
plaining rapid Antarctic ice shelf disintegration (RAISD) implicate 
low-frequency gravity wave events (LFGWEs) as potential triggers. 

Although there are many types of LFGWEs, this study focuses spe-
cifically on detecting infragravity waves and swells. These events 
were chosen because they occur commonly and produce clearly visi-
ble features in spectrograms as seen in Fig. 1(b). 

In an effort to catalog these events for further study, we present the 
U-Net for Panoptic Seismic Spectrogram Segmentation (UP3S). 
UP3S is a supervised machine learning approach to detecting, classi-
fying, and cataloging LFGWEs using panoptic spectrogram segmen-
tation. The data used during training were collected by a broadband 
seismic array deployed on the RIS from November 2014 to 2016.

We achieved a Dice similarity coefficient (DSC) of over 0.73 during 
event detection and an accuracy of 94.4% during classification, out-
performing alternative rule-based techniques. This study serves as a 
proof-of-concept for using deep-learning algorithms to predict the 
long-term stability of cryogenic structures.

1. Abstract               Waveform data were-
drawn from a broadband seismic array deployed on the 
RIS from November 2014 to November 2016. These data 
were lowpass filtered at 80 mHz and converted into spec-
trograms with dimensions of 432 pixels by 224 pixels as 
seen in Fig .1(b). Corresponding binary masks were cre-
ated for each of these spectrograms, with event pixels la-
beled white and noise labeled black as seen in Fig. 1(a).

UP3S consists of a baseline U-Net5 model with batch 
normalization2 layers added between down and up-con-
volutional layers. This modification helped avoid overfit-
ting on the relatively small dataset of spectrograms used. 
UP3S was trained on 189 spectrogram-mask pairs for 
100 epochs using binary cross entropy loss. 

Model output post-processing involveed four steps—(1) 
denoising, (2) event separation, (3) classification, (4) cat-
aloging. Most outputted masks contained noise artifacts  
that were removed as seen in Fig. 2(a). Following de-
noising, days with multiple event detections were sepa-
rated and proceesed indivdually. 

A logistic regression classifier was trained to distinguish 
infragravity waves and swells. The outputs of this classi-
fication are color coded as seen in Fig. 3(d). Columnar it-
eration is then used to timestamp each event. Aggregate 
results were used to create an event catalog.

3. Methodology

                   UP3S was trained on 189 hand labeled spectrograms, a relatively small dataset con-
sidering the high SNR (signal-to-noise ratio) present in the data. The addition of batch normalization layers2 allowed  
the model to avoid overfitting. Furthermore, delegating classification as a step in post-processing allowed the model to 
learning more generalizable features without accounting for event type. The model was evaluated using Dice similarity 
coefficients (DSCs) and raw pixel accuracies. After 100 epochs of training  using an Adam optimizer with a learning 
rate of 0.0001, UP3S achieved a peak DSC of 0.73 and raw pixel accuracy of 97.4%. Qualitative assesment of its per-
formance on feature extraction can be seen in Fig. 2(b). UP3S accurately extracts general areas of high power in the 
correct low frequency bands, ignoring features at unlikely frequencies and in unlikely shapes. Post-processing logistic 
regression classification achieved an accuracy of 94.4% while differentiating infragravity waves and swells. Classifier 
accuracy can be judged qualitatively from Fig. 3(d). Performance of UP3S’s batch inference can be seen in Fig. 2(b) 
and the end-to-end process—from feature masking to event classification—can be seen in Fig. 3.

4. Results
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Figure 2: 
 
The two  leftmost 
columns (a) 
depict post pro-
cessing denois-
ing. Each hori-
zontal pair of 
images rep-
resents a model 
output and corre-
sponding de-
noised mask.

The two right-
most columns (b) 
show the model’s 
predictions of 
events locations 
in the spectro-
grams. This in-
ference step was 
performed with a 
batch size of 10. 
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Figure 3: Column (a) contains inputs to the model. Column (b) con-
tains corresponding masked outputs. Column (c) contained denoised 
outputs. Column (d) contains event classifications with infragravity 
waves labeled in yellow and swells in green.

                 Ice shelves are 
large floating platforms of ice anchored on at least one 
side to a landmass. They serve as instrumental media-
tors of the boundary between ocean and glacier—re-
stricting, buttressing, and controlling the flow of 
grounded ice into the ocean. As such, the collapse of 
Antarctic ice shelves accelerates ice flow from up-
stream glaciers, causing an increase in sea level rise 
projections.3

Various processes including hydrofracture, warming 
atmospheric rivers, and infragravity-wave (IG) in-
duced rifting have been proposed to explain 
RAISD6,4,1. 

This study focuses on the last of these hypotheses, ex-
ploring LFGWEs as triggers for RAISD. Their long 
periods can induce flexure in large sections of the 
shelf simultaneously, allowing for long, rapidly form-
ing fractures to catalyze or trigger rapid shelf-wide 
disintegration.

More evidence in the form of LFGWE catalogs is nec-
essary to verify this theory. A database of such events 
could be used to correlate real-time satellite imagery 
with seismic data, allowing for a better undertanding 
of the stability of these shelves and consequent projec-
tions about future sea level rise.

2. Introduction

(a) (b)

Figure 1:  The left column (a) illustrates a swell and its corresponsing binary mask. The 
right column (b) shows the features of an infragravity wave (top) and swell (bottom).
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