REMOVING RADIO FREQUENCY INTERFERENCE FROM AURORAL KILOMETRIC RADIATION WITH STACKED CONVOLUTIONAL DENOISING AUTOENCODERS

Allen Chang^{1,2}, Mary Knapp³, James LaBelle⁴, John Swoboda³, Ryan Volz³, Philip J. Erickson³

¹Department of Computer Science, University of Southern California, Los Angeles, USA

² Haystack Observatory REU, Massachusetts Institute of Technology, Westford, USA

³ Haystack Observatory, Massachusetts Institute of Technology, Westford, USA

⁴ Department of Physics and Astronomy, Dartmouth College, Hanover, USA

Department of Physics and Astronomy, Dartmourt Coucye, Hanover,

AERO-VISTA missions will observe the Earth's auroral region.

- The dominant goal of the AERO-VISTA missions is to study the Earth's auroral zones
- One strong emission is auroral kilometric radiation (AKR), which comes from the electron cyclotron maser mechanism
- One way AKR is downlinked is in the form of time-frequency spectrograms
- However, spectrograms (both observed in space- and ground-level) contain harsh radio frequency interference (RFI) that obscure AKR

Fig 1. The AERO spacecraft AERO-VISTA project

AKR observations are corrupted by electronic interference.

500.0

250.0

0.0

01:26:00

01:26:46

01:27:33

01:28:20

01:29:06

- y axis: frequency, typically in the ranges of (0 - 2000 kHz)
- x axis: time
- color: dB intensity

* plots have different scales

-25

-30

01:29:53

AKR observations are corrupted by electronic interference.

- y axis: hequency.
 typically in the ranges at its - 2000 kms)
- a della firma
- calor dli intensity

* plats have different scales

Several motivations exist for noise removal.

- Visual analysis by scientists
- Automatic detection and categorization of auroral radiation
- Unsupervised clustering of emissions with similar characteristics
- Forecasting of future AKR events
- Comparison of AKR across long geographical distances
- Comparison to AKR above the ionosphere
- (+ any other downstream applications and analysis of AKR data)

What can be done about noise?

Data collection

- Operate somewhere more silent (such as the South Pole or space)
 - Not a foolproof solution, as seen in the previous plots

Post-processing

• Physical cancellation applying convolutions with wavelets (requires knowledge of the exact structure of the noise, assuming the noise structure is constant)

- Manual instance removal of noise (costly)
- Apply existing image denoising techniques to spectrograms (this project)

Main computational image denoising methods.

Fig 2. A filtering method

https://www.numerical-tours.com/matlab/denoising adv_8_bilateral/

Fig 3. A deep-learning method

https://towardsdatascience.com/6-applications-of-autoencoders-every-data-scientist-should-know-dc703cbc89 2b

Main steps in a deep-learning approach.

- 1. We need a dataset for the denoising model to train from
- 2. Choose an architecture to denoise with
- 3. Compare across other denoising algorithms to see if our approach is good

We synthesized random AKR samples to train from.

9

Variables used to randomize our ground truths include:

- Background intensity
- Number of AKR
- AKR⁽ⁱ⁾ position
- AKR⁽ⁱ⁾ intensity
- AKR⁽ⁱ⁾ mirroring

Variables used to randomize our noise include:

- Gaussian noise intensity
- Overall channel intensity
- Channel⁽ⁱ⁾ height
- Channel⁽ⁱ⁾ position
- Channel⁽ⁱ⁾ intensity

Sample of training data generated with this method.

Paired samples

We chose to use a denoising autoencoder, which is the following:

Real AKR observation: 08-11-2016 00:40 UT

Real AKR observation: 07-03-2021 01:26 UT

Denoised spectrograms of other AKR observations

Main strengths of DAARE:

- Automated algorithm to denoise AKR spectrograms
- Efficient
 - Can run in batches and be parallelized
 - Each spectrogram can be processed in **< 1 second** (A batch of 16 spectrograms processed in 3.314 seconds without the use of a GPU)

Main limitations of DAARE:

- Change in AKR spectra intensity
- Potential change or loss in AKR features

Open-Sourcing DAARE

Detailed code and documentation for DAARE can be accessed at: <u>https://github.com/Cylumn/daare</u>.

The repository contains detailed comments and instruction to train and use the model, as well as an API to simplify using DAARE without prior knowledge of PyTorch.

How do we improve DAARE?

- Improve the training set
 - Manually remove noise for the training set
 - Increase simulation fidelity
- Specific preprocessing of spectrograms
- Model architecture search

Takeaways

- Though AKR observations often contain noise that occlude data, it is possible to remove noise from the data for downstream applications and analysis
- Other radio data with RFI could potentially benefit from applying DAARE
- Future work can apply machine learning to auroral data and ionospheric sciences which has (for the most part) been left untouched

https://clipart.me/free-vector/aurora

Thank you!

Mentors

Mary Knapp John Swoboda Ryan Volz Toby Gedenk Philip J. Erickson James LaBelle

Program Managers

Vincent Fish Philip J. Erickson Nancy Kotary

Administrators

Diane Tonelli Heidi Johnson

MIT HAYSTACK OBSERVATORY

Friends and Colleagues

Alexis Lupo Anna Apilado Angelu Ramos Audrija Sarkar Brian Malkan Kathryn Postiglione Katy Hunter Max Riccioli Michael Gutierrez Shivansh Baveja Sarah Zhang Tal Sternberg

+ everyone else who made this REU possible!

26

DARTMOUTH

Takeaways

- Though AKR observations often contain noise that occlude data, it is possible to remove noise from the data for downstream applications and analysis
- Other radio data with RFI could potentially benefit from applying DAARE
- Future work can apply machine learning to auroral data and ionospheric sciences which has (for the most part) been left untouched

https://clipart.me/free-vector/aurora

