
Technical University of Munich

Page1

FS Station Code

Experience level: Advanced.

Description: This course describes how to write station specific code in
C++. We discuss what is required to implement your own control loops
outside of the FS supporting tasks required by the FS.

Alexander Neidhardt (TUM Wettzell)

TOW2023 - Seminar

Code: FSa1, FSa2

Technical University of Munich

Page2

FS Station Code

TOW2023 - Seminar

What does a station has to offer to the FS?
How to simplify access to data of the FS?
How to control your equipment from FS with “fsmonitor”?
How to command the FS in your code?
How to read answers from the FS in your code?
How to manually interact with the FS from remote?
How to use multiple devices in your FS?
How to integrate FS in your certified control loop?

Technical University of Munich

Page3

What does a station has to offer to the FS?

The NASA Field System can be split into six main
layers:
1. Programs for hardware control

(hardware driving)
2. Programs for (module) checking

(monitoring)
3. Programs for the SNAP command

interpretation
4. Programs for Command Processing and

Control (coordination: «boss» or, e.g., the
Antenna Calibration Data Acquisition «aquir»)

5. Programs for error reporting
6. Programs for user interfacing

The NASA Field System can be split into two
categories, according to where the code
is developed:
1. the general Field System programs from

NASA/NVI (Himwich, Horsley, et. al.
2. station code, individually programmed by

station staff

Technical University of Munich

Page4

What does a station has to offer to the FS?

Station-specific programs

Antenna Control („antcn“)

Station specific commands („stqkr“)

Station specific programs
to fill shared memory

(„wx2fs“, „cable2fs“)

Station specific programs
do local tasks

(e.g. local data monitoring)

Activated in dev.ctl

Activated in stpgm.ctl

Activated in stpgm.ctl

Station specific
procedures

(„station.prc“)

Technical University of Munich

Page5

What does a station has to offer to the FS?

For basics in FS programming see:

Technical University of Munich

Page6

FS Station Code

TOW2023 - Seminar

What does a station has to offer to the FS?
How to simplify access to data of the FS?
How to control your equipment from FS with “fsmonitor”?
How to command the FS in your code?
How to read answers from the FS in your code?
How to manually interact with the FS from remote?
How to use multiple devices in your FS?
How to integrate FS in your certified control loop?

Technical University of Munich

Page7

How to simplify access to data of the FS?

Abstraction layer for NASA FS functionality
Based on code from Helge Rottmann
Written in C (=> usable for C and C++)
Avoiding some limitations, e.g. naming conventions, length of lines in the log

Consisting of:

- fsshm.c/.h, shmaccess_structs.h: Communicating with the Field System
- Service functions (e.g. usInitSHM, usIsFieldSystemRunning)
- Accessing shared memory values (e.g. usGetSHMTempWX, usSetSHMTempWX)
- Communication with NASA FS boss (main program)
- Command injection

- fs_command.cpp/.hpp: Injection of commands to the Field System

- fs_util.cpp/.hpp: helping methods like converter etc.

Module „fsmonitor“ (Wettzell)

Technical University of Munich

Page8

How to simplify access to data of the FS?

Module „fsmonitor“ (Wettzell)

Service functions

Technical University of Munich

Page9

How to simplify access to data of the FS?

Module „fsmonitor“ (Wettzell)

Accessing shared memory values

Technical University of Munich

Page10

How to simplify access to data of the FS?

Module „fsmonitor“ (Wettzell)

Communication with NASA FS boss

typedef long * BOSSCOM;
unsigned short usOpenBossCommunication (BOSSCOM * pBOSSCOMIdentifier);
unsigned short usCloseBossCommunication (BOSSCOM * pBOSSCOMIdentifier);
unsigned short usWaitForMessageFromBoss (BOSSCOM * pBOSSCOMIdentifier,

char * pcProgramName,
char acReceivedMessage[4096]);

long lGetCommandIdentifierOfIncomingCommand (BOSSCOM * pBOSSCOMIdentifier);
long lGetIPCClassNumberForIncomingMessage (BOSSCOM * pBOSSCOMIdentifier);
long lGetNumberOfElementsInIncomingMessage (BOSSCOM * pBOSSCOMIdentifier);
unsigned short usAcknowledgeMessageProcessing (BOSSCOM * pBOSSCOMIdentifier);
unsigned short usPrintMessage2Log (BOSSCOM * pBOSSCOMIdentifier,

const char acProgramNameInput[6],
const char * pcFormat,
...);

unsigned short usPrintError2Log (BOSSCOM * pBOSSCOMIdentifier,
const char acProgramNameInput[6],
const char acFSErrorIdentCodeInput[3],
int iErrorCode,
const char * pcFormat,
...);

unsigned short usReplyMessageToBoss (BOSSCOM * pBOSSCOMIdentifier,
const char * pcFormat,
...);

unsigned short usWriteSatEphemToFile(void);

Technical University of Munich

Page11

How to simplify access to data of the FS?

Module „fsmonitor“ (Wettzell)

Command injection

Technical University of Munich

Page12

FS Station Code

TOW2023 - Seminar

What does a station has to offer to the FS?
How to simplify access to data of the FS?
How to control your equipment from FS with “fsmonitor”?
How to command the FS in your code?
How to read answers from the FS in your code?
How to manually interact with the FS from remote?
How to use multiple devices in your FS?
How to integrate FS in your certified control loop?

Technical University of Munich

Page13

Antenna Control („antcn“) Activated in dev.ctl

How to control your equipment from FS with “fsmonitor”?

Station-specific programs

Station specific programs
to fill shared memory

(„wx2fs“, „cable2fs“)

Station specific programs
do local tasks

(e.g. local data monitoring)

Activated in stpgm.ctl

Station specific
procedures

(„station.prc“)

Station specific commands („stqkr“) Activated in stpgm.ctl

Technical University of Munich

Page14

How to control your equipment from FS with “fsmonitor”?

#include <stdio.h>
#include <stdlib.h>
#include "fsshm.h„
#include "simple_structured_conf.hpp"
#include "meteo.hpp"
#include "rxmon.hpp"
#include "testequip.hpp"

int main (int iArgc, char * pcArgv[])
{

BOSSCOM BOSSCOMIdentifier = NULL; /// BOSSCOMIdentifier = Identification of current communication (it is a pointer to the data set
/// "ip" of the field system)

char acProgramName[6] = "stqkr"; /// pcProgramName = name of the program, which waits for a message
char acReceivedMessage[4096]; /// acReceivedMessage = complete message sent from boss
CSimpleStructuredConf CConfiguration; /// CConfiguration = the whole configuration parameters of the stqkr program
unsigned long ulCurrentLineNumber; /// ulCurrentLineNumber = line number of the configuration file, where an error occured
std::string strCurrentTag; /// strCurrentTag = tag in the configuration file, where the error occured

printf ("stqkr: Startup ...\n");

/// Open communication to NASA FS boss
if (usOpenBossCommunication (&BOSSCOMIdentifier))
{

printf ("[ERROR] stqkr: Cannot open connection to NASA FS boss\n");
return 1;

}

/// Check program parameters
if (iArgc != 2)
{

(void) usPrintError2Log (&BOSSCOMIdentifier, acProgramName, "SQ", -1, "");
goto CloseBossCommunication;

}

/// Read configuration
if (CConfiguration.usReadConfig (pcArgv[1], ulCurrentLineNumber, strCurrentTag))
{

if (strCurrentTag.empty())
{

(void) usPrintError2Log (&BOSSCOMIdentifier, acProgramName, "SQ", -2, "No file found");
}
else
{

(void) usPrintError2Log (&BOSSCOMIdentifier, acProgramName, "SQ", -2, "Error in line %ld arround tag '%s'",
ulCurrentLineNumber, strCurrentTag.c_str());

}
goto CloseBossCommunication;

}

Initialize

„stqkr.cpp“

Technical University of Munich

Page15

How to control your equipment from FS with “fsmonitor”?

„stqkr.cpp“

/// Start processing loop
while (1)
{

/// Wait for incoming messages from boss
if (usWaitForMessageFromBoss (&BOSSCOMIdentifier,

acProgramName,
acReceivedMessage))

{
continue;

}

/// Switch between the different commands according to the class number
switch (lGetIPCClassNumberForIncomingMessage (&BOSSCOMIdentifier))
{

// **
// Command "wx"
// **
case 100: /* wx */
{
}
// **
// Command "rx" and "rxall"
// **
case 200: /* rx */
case 201: /* rxall */
{
}
...

if (usAcknowledgeMessageProcessing (&BOSSCOMIdentifier))
{

continue;
}

}

CloseBossCommunication:
/// Close communication to NASA FS boss
if (usCloseBossCommunication (&BOSSCOMIdentifier))
{

printf ("[ERROR] stqkr: Cannot close connection\n");
return 1;

}

printf ("[ERROR] stqkr: While loop failed\n");
return 1;

}

Wait for incoming
Orders and
Receive command
and arguments

Identify
command

Interprete and
Performe action
according to
command
=> Call function

Prepare return
values

Technical University of Munich

Page16

How to control your equipment from FS with “fsmonitor”?

„stqkr.cpp“ – sample SNAP command „dotmon“

stqkr.cpp
switch (lGetIPCClassNumberForIncomingMessage (&BOSSCOMIdentifier))
{
...

case 210:
{

/// Call function from testequip.cpp/.hpp
if (usGetDotmon (&BOSSCOMIdentifier, acReceivedMessage))
{

(void) usPrintError2Log (&BOSSCOMIdentifier, acProgramName, "SQ", -800, "");
}
break;

}
...
}

/usr2/control/stcmd.ctl

Technical University of Munich

Page17

How to control your equipment from FS with “fsmonitor”?

„stqkr.cpp“ – sample SNAP command „dotmon“
unsigned short usGetDotmon (BOSSCOM * pBOSSCOMIdentifier,

std::string strCommand)
{

/// Variables:
unsigned short usRetVal = 0;
bool bConnectionOpened = false;
SimpleSocketType SClientSocket;
char acBuffer[1024];
unsigned long ulBufferLength;
double dTimeValueInSec = 0.0;

/// Operations:
/// Open connection
/// Send command for reading the last actual counter value
/// Receive counter value
/// Send answer to NASA FS
if (usReplyMessageToBoss (pBOSSCOMIdentifier, "gps-fmout/%.4e", dTimeValueInSec) ||

usPrintMessage2Log (pBOSSCOMIdentifier, "stqkr", "Info: gps (Symmetricom SyncServer S250) minus fmout (Mark5B+)"))
{

(void) usPrintError2Log (pBOSSCOMIdentifier, "stqkr", "SQ", -800, "dotmon: Cannot return dotmon data");
usRetVal = 1;
goto ReturnToStqkr;

}
...
if (bConnectionOpened)
{

if(uiCloseSocket(&SClientSocket))
{

(void) usPrintError2Log (pBOSSCOMIdentifier, "stqkr", "SQ", -800, "dotmon: Cannot close socket to 192.168.208.8:5025");
usRetVal = 1;

}
bConnectionOpened = false;

}
/// Send error answer to NASA FS
if (usRetVal)
{

if (usReplyMessageToBoss (pBOSSCOMIdentifier, "dotmon: MK5B-dotmon to HOUSE-PPS/NOK"))
{

(void) usPrintError2Log (pBOSSCOMIdentifier, "stqkr", "SQ", -800, "dotmon: Cannot return dotmon data");
usRetVal = 1;

}
}

return usRetVal;
}

Technical University of Munich

Page18

How to control your equipment from FS with “fsmonitor”?

„stqkr.cpp“ – sample SNAP command „dotmon“
unsigned short usGetDotmon (BOSSCOM * pBOSSCOMIdentifier,

std::string strCommand)
{

/// Variables:
unsigned short usRetVal = 0;
bool bConnectionOpened = false;
SimpleSocketType SClientSocket;
char acBuffer[1024];
unsigned long ulBufferLength;
double dTimeValueInSec = 0.0;

/// Operations:
/// Open connection
/// Send command for reading the last actual counter value
/// Receive counter value
/// Send answer to NASA FS
if (usReplyMessageToBoss (pBOSSCOMIdentifier, "gps-fmout/%.4e", dTimeValueInSec) ||

usPrintMessage2Log (pBOSSCOMIdentifier, "stqkr", "Info: gps (Symmetricom SyncServer S250) minus fmout (Mark5B+)"))
{

(void) usPrintError2Log (pBOSSCOMIdentifier, "stqkr", "SQ", -800, "dotmon: Cannot return dotmon data");
usRetVal = 1;
goto ReturnToStqkr;

}
...
if (bConnectionOpened)
{

if(uiCloseSocket(&SClientSocket))
{

(void) usPrintError2Log (pBOSSCOMIdentifier, "stqkr", "SQ", -800, "dotmon: Cannot close socket to 192.168.208.8:5025");
usRetVal = 1;

}
bConnectionOpened = false;

}
/// Send error answer to NASA FS
if (usRetVal)
{

if (usReplyMessageToBoss (pBOSSCOMIdentifier, "dotmon: MK5B-dotmon to HOUSE-PPS/NOK"))
{

(void) usPrintError2Log (pBOSSCOMIdentifier, "stqkr", "SQ", -800, "dotmon: Cannot return dotmon data");
usRetVal = 1;

}
}

return usRetVal;
}

Error processing comparable to „printf“

Technical University of Munich

Page19

FS Station Code

TOW2023 - Seminar

What does a station has to offer to the FS?
How to simplify access to data of the FS?
How to control your equipment from FS with “fsmonitor”?
How to command the FS in your code?
How to read answers from the FS in your code?
How to manually interact with the FS from remote?
How to use multiple devices in your FS?
How to integrate FS in your certified control loop?

Technical University of Munich

Page20

How to command the FS in your code?

Command injection

/usr2/fs/bin/inject_snap

/usr2/fs/bin/inject_snap –w log Output of current log filename
e.g. log/station

/usr2/fs/bin/inject_snap <command>
e.g.
/usr2/fs/bin/inject_snap wx

 Send command to FS

/usr2/fs/bin/inject_snap '" Test' Send comment to FS

Technical University of Munich

Page21

How to command the FS in your code?

Command injection

/usr2/fs/bin/inject_snap

Sample code in Perl:

inject_snap -w will not wait for a procedure to finish

Technical University of Munich

Page22

FS Station Code

TOW2023 - Seminar

What does a station has to offer to the FS?
How to simplify access to data of the FS?
How to control your equipment from FS with “fsmonitor”?
How to command the FS in your code?
How to read answers from the FS in your code?
How to manually interact with the FS from remote?
How to use multiple devices in your FS?
How to integrate FS in your certified control loop?

Technical University of Munich

Page23

How to read answers from the FS in your code?

Command reply catching („streamlog“)

FS Display Server to get log messages

https://github.com/nvi-inc/fs/blob/main/misc/display_server.md

“streamlog” is recommended for FS 10.2 or greater
to get log messages.

Technical University of Munich

Page24

How to read answers from the FS in your code?

Command reply catching („streamlog“)

/usr2/fs/bin/fsclient

/usr2/fs/bin/fsclient -n

/usr2/fs/bin/fsclient –s -n

 Get all log messages on standard out

 Get all log messages on standard out
inclusively some historic lines

End with Ctrl - C

==> pipe the output to a program which can read it as standard in so
that you can use it in other programs or scripts e.g.

fsclient –s –n | grep "wx"

Technical University of Munich

Page25

FS Station Code

TOW2023 - Seminar

What does a station has to offer to the FS?
How to simplify access to data of the FS?
How to control your equipment from FS with “fsmonitor”?
How to command the FS in your code?
How to read answers from the FS in your code?
How to manually interact with the FS from remote?
How to use multiple devices in your FS?
How to integrate FS in your certified control loop?

Technical University of Munich

Page26

How to manually interact with the FS from remote?

Standard remote control:

/usr2/fs/bin/fsclient via SSH-connection and X-forwarding

fsclient Start the client windows

Technical University of Munich

Page27

How to manually interact with the FS from remote?

Standard remote control:

/usr2/fs/bin/fsclient via SSH-connection and X-forwarding

client= commands in fsclient-oprin (not in „oprin“-call in a shell)

Opens X-Window

Control your FS from MS Windows:
- Install X-Window-Server, e.g. Xming or VcXsrv Windows X Server

- Connect to the FS PC using SSH with X-forwarding
- Start „fsclient“

Technical University of Munich

Page28

How to manually interact with the FS from remote?

Standard remote control:

/usr2/fs/bin/fsclient via SSH-connection and X-forwarding

client= commands in fsclient-oprin

/usr2/control/clpgm.ctl

Technical University of Munich

Page29

FS Station Code

TOW2023 - Seminar

What does a station has to offer to the FS?
How to simplify access to data of the FS?
How to control your equipment from FS with “fsmonitor”?
How to command the FS in your code?
How to read answers from the FS in your code?
How to manually interact with the FS from remote?
How to use multiple devices in your FS?
How to integrate FS in your certified control loop?

Technical University of Munich

Page30

How to use multiple devices in your FS?

Sample 2 DBBCs:

/usr2/control/dbbad.ctl

 Commands
...
dbbc=power=1
...
fila10g=arp off
...

/usr2/control/dbba2.ctl

 Commands
...
dbbc2=power=1
...
fila10g2=arp off
...

But what if you have more than
the allowed standard devices?

Attention … here comes a hack!!!

Technical University of Munich

Page31

How to use multiple devices in your FS?

But what if you have more than
the allowed standard devices?

socat – Multipurpose relay

socat_basic_call="socat TCP-LISTEN:140,fork,reuseaddr TCP:"
Kill previous patching
COMMAND="ps ax | grep \"${socat_basic_call}\" | grep -v grep | grep -o -E \"^[]*[0-9]+\" | tr '\n' ' '"
SOCAT_PIDS=`eval $COMMAND`
if [[-n $SOCAT_PIDS]]; then

kill -9 $SOCAT_PIDS
#echo -e "Killing processes with \"kill -9 $SOCAT_PIDS\""

fi
Start patching of communication with socat
SOCAT_CALL="${socat_basic_call}192.168.1.1:143 > /dev/null 2> /dev/null &"
eval $SOCAT_CALL

e.g. socat TCP-LISTEN:142,fork,reuseaddr TCP:192.168.1.1:142

Script myscript_device3.sh

Extend station.prc
define mydev3 00000000000x
sy=/usr2/st/bin/myscript_device3.sh > /dev/null 2> /dev/null
enddef

Technical University of Munich

Page32

How to use multiple devices in your FS?

socat – Multipurpose relay

e.g. socat TCP-LISTEN:142,fork,reuseaddr TCP:192.168.1.1:142

FS PC

Device 1

Device 2

Device 3

…

socat
Port:
140

Port:
141

Port:
142

Port:
143

SNAP command
mydev1

fs

But what if you have more than
the allowed standard devices?

Technical University of Munich

Page33

How to use multiple devices in your FS?

socat – Multipurpose relay

e.g. socat TCP-LISTEN:142,fork,reuseaddr TCP:192.168.1.1:142

FS PC

Device 1

Device 2

Device 3

…

socat
Port:
140

Port:
141

Port:
142

Port:
143

SNAP command
mydev2fs

But what if you have more than
the allowed standard devices?

Technical University of Munich

Page34

How to use multiple devices in your FS?

socat – Multipurpose relay

e.g. socat TCP-LISTEN:142,fork,reuseaddr TCP:192.168.1.1:142

FS PC

Device 1

Device 2

Device 3

…

socat
Port:
140

Port:
141

Port:
142

Port:
143

SNAP command
mydev3

fs

But what if you have more than
the allowed standard devices?

Technical University of Munich

Page35

FS Station Code

TOW2023 - Seminar

What does a station has to offer to the FS?
How to simplify access to data of the FS?
How to control your equipment from FS with “fsmonitor”?
How to command the FS in your code?
How to read answers from the FS in your code?
How to manually interact with the FS from remote?
How to use multiple devices in your FS?
How to integrate FS in your certified control loop?

Technical University of Munich

Page36

How to integrate FS in your certified control loop?

Technical University of Munich

Page37

How to integrate FS in your certified control loop?

Show current

status to

the user

Shared mem.
specific, local

GUI

Technical University of Munich

Page38

How to integrate FS in your certified control loop?

BATCH-Mode

Timestamp

Action =>

<=Reply

Timestamp

Action =>

<=Reply

Timestamp

Action =>

<=Reply

Show current

status to

the user
Only if

commanded
Shared mem.
specific, local

GUI

Program

(int. Timing)

Action =>

<=Reply

Specific, not
monitored

Own programs

Technical University of Munich

Page39

How to integrate FS in your certified control loop?

Technique known from SW tests

Technical University of Munich

Page40

How to integrate FS in your certified control loop?

Technique known from SW tests

NASA FS
Output

remotely
accessable

e.g.
Logs

Errors
…

Technical University of Munich

Page41

How to integrate FS in your certified control loop?

Technique known from SW tests

NASA FS
Output

remotely
accessable

e.g.
Logs

Errors
…

C
o
m

.
ta

s
k
s

C
o
n
tr

o
lle

r
ta

s
k

Watch dog

C
o
m

.
ta

s
k
s

C
o
n
tr

o
lle

r
ta

s
k

Watch dog

Monitoring-Bypass

e.g.
Antenna
Timing
Meteo

Rx
…

Add.
safety

…

Technical University of Munich

Page42

How to integrate FS in your certified control loop?

#ifndef __PERIODIC_CLOUDCOVERAGE_THREAD__
#define __PERIODIC_CLOUDCOVERAGE_THREAD__

#include "meteo_simple_thread.hpp"
#include "meteo_simple_semvar.hpp"

class PeriodicCloudCoverageThreadClass : public meteo_CSimpleThread
{

private:
meteo_semvar<char> priv_cProtectPrivateVariablesSemaphore;
bool priv_bInitSuccessful;
std::string priv_strUsedIPAddress;
std::string priv_strUsedWebPageURL;
unsigned long priv_ulSamplingTimeInSec;
bool priv_bError;
unsigned short priv_usFatalError;
bool priv_bThreadIsRunning;
bool priv_bSilentMode;
unsigned long priv_ulTimeOfLastCompleteDataset;

/// priv_ulTimeOfLastCompleteDataset = Time stamp of the last
/// completely and correctly read meteo data set

double priv_dCloudCoverage;
bool priv_bUseWebpageImage;

public:
enum ErrorCodesEnum {PERIODICCLOUDCOVTHREAD_OK = 0,

PERIODICCLOUDCOVTHREAD_NOK,
PERIODICCLOUDCOVTHREAD_NOKINITALREADYDONE,
PERIODICCLOUDCOVTHREAD_NOKNOTREADY,
PERIODICCLOUDCOVTHREAD_FATALSEMAPHORE,
PERIODICCLOUDCOVTHREAD_FATALHTTPADDRESS,
PERIODICCLOUDCOVTHREAD_FATALSYSTEMCALL,
PERIODICCLOUDCOVTHREAD_FATALSVALUEFILE
};

private:
int iRun (bool bDetached=THREAD_DETACHED, const int iDelayMillis=0)
{

return meteo_CSimpleThread::iRun (bDetached, iDelayMillis);
}
void * pvEntry ();
void vSleep (unsigned short usSleepTimeMillisec);

Technical University of Munich

Page43

How to integrate FS in your certified control loop?

public:
PeriodicCloudCoverageThreadClass ();
PeriodicCloudCoverageThreadClass (const PeriodicCloudCoverageThreadClass & CIn);
~PeriodicCloudCoverageThreadClass ();
PeriodicCloudCoverageThreadClass & operator= (const PeriodicCloudCoverageThreadClass & CIn);
unsigned short usRun (const std::string & strUsedIPAddress,

const std::string & strUsedDefaultWebPageURL,
const unsigned long & ulSamplingTimeInSec,
const bool & bSilentMode = false);

unsigned short usRunWebImageUse (const std::string & strUsedWebPageURL,
const unsigned long & ulSamplingTimeInSec,
const bool & bSilentMode = false);

bool bIsErrorAndReset();
bool bIsError();
bool bIsFatalError();
bool bIsRunning();
unsigned short usGetCloudCoverage (unsigned long & ulTimeOfLastCompleteDataset,

double & dCloudCoveragePercent);
void vPrintCloudCoverageValues ();

};

#endif //__PERIODIC_CLOUDCOVERAGE_THREAD__

Important parts are
- usRun => Initialize and startup of the thread
- pvEntry => Loop with frequently performed tasks

Technical University of Munich

Page44

How to integrate FS in your certified control loop?

unsigned short PeriodicCloudCoverageThreadClass::usRun (const std::string & strUsedIPAddress,
const std::string & strUsedDefaultWebPageURL,
const unsigned long & ulSamplingTimeInSec,
const bool & bSilentMode)

{
unsigned short usRetVal = PERIODICCLOUDCOVTHREAD_OK;
unsigned long ulBlockHandle = 0;

/// Block semaphores
try
{

priv_cProtectPrivateVariablesSemaphore.vBlock (ulBlockHandle);
}
catch (...)
{

priv_usFatalError = PERIODICCLOUDCOVTHREAD_FATALSEMAPHORE;
return PERIODICCLOUDCOVTHREAD_NOK;

}

if (priv_bInitSuccessful)
{

usRetVal = PERIODICCLOUDCOVTHREAD_NOKINITALREADYDONE;
}
else
{

/// Copy IP address and timeout and init connection
priv_bUseWebpageImage = false;
priv_ulSamplingTimeInSec = ulSamplingTimeInSec;
priv_strUsedIPAddress = strUsedIPAddress.c_str();
priv_strUsedWebPageURL = strUsedDefaultWebPageURL.c_str();
priv_bInitSuccessful = true;

}

/// Unblock semaphores
try
{

priv_cProtectPrivateVariablesSemaphore.vUnblock (ulBlockHandle);
}
catch (...)
{

priv_usFatalError = PERIODICCLOUDCOVTHREAD_FATALSEMAPHORE;
return PERIODICCLOUDCOVTHREAD_NOK;

}

usRun => Initialize and startup of the thread

Set and define configuration
values

Technical University of Munich

Page45

How to integrate FS in your certified control loop?

/// Check if init failed
if (usRetVal != PERIODICCLOUDCOVTHREAD_OK)
{

return usRetVal;
}

/// Start thread
if (meteo_CSimpleThread::iRun())
{

/// Block semaphores
try
{

priv_cProtectPrivateVariablesSemaphore.vBlock (ulBlockHandle);
}
catch (...)
{

priv_usFatalError = PERIODICCLOUDCOVTHREAD_FATALSEMAPHORE;
return PERIODICCLOUDCOVTHREAD_NOK;

}
priv_bInitSuccessful = false;
/// Unblock semaphores
try
{

priv_cProtectPrivateVariablesSemaphore.vUnblock (ulBlockHandle);
}
catch (...)
{

priv_usFatalError = PERIODICCLOUDCOVTHREAD_FATALSEMAPHORE;
return PERIODICCLOUDCOVTHREAD_NOK;

}
return PERIODICCLOUDCOVTHREAD_NOK;

}

return PERIODICCLOUDCOVTHREAD_OK;
}

Start periodic loop as thread

Technical University of Munich

Page46

How to integrate FS in your certified control loop?

void * PeriodicCloudCoverageThreadClass::pvEntry ()
{

/// Local variables
...

while (1)
{

ulBlockHandle = 0;
ulStarttime = time(NULL);

/// ===
/// Get private variables
/// ===
/// Block semaphores
try
{

priv_cProtectPrivateVariablesSemaphore.vBlock (ulBlockHandle);
}
catch (...)
{

priv_usFatalError = PERIODICCLOUDCOVTHREAD_FATALSEMAPHORE;
goto SleepManagementContinue;

}

/// Copy current values from private to local
bError = false;
usFatalError = priv_usFatalError;
ulSleepTimeSec = priv_ulSamplingTimeInSec;
strUsedIPAddress = priv_strUsedIPAddress.c_str();
strUsedWebPageURL = priv_strUsedWebPageURL.c_str();
bSilentMode = priv_bSilentMode;
bUseWebpageImage = priv_bUseWebpageImage;

/// Unblock semaphores
try
{

priv_cProtectPrivateVariablesSemaphore.vUnblock (ulBlockHandle);
}
catch (...)
{

priv_usFatalError = PERIODICCLOUDCOVTHREAD_FATALSEMAPHORE;
goto SleepManagementContinue;

}

if (usFatalError != PERIODICCLOUDCOVTHREAD_OK)
{

goto SleepManagementContinue;
}

Prepare configuration
values

pvEntry => Loop with frequently performed tasks

Technical University of Munich

Page47

How to integrate FS in your certified control loop?

/// ===
/// Read from hardware
/// ===

...

ErrorContinue:
/// ===
/// Set private variables
/// ===
/// Block semaphores
try
{

priv_cProtectPrivateVariablesSemaphore.vBlock (ulBlockHandle);
}
catch (...)
{

priv_usFatalError = PERIODICCLOUDCOVTHREAD_FATALSEMAPHORE;
goto SleepManagementContinue;

}
priv_bError = bError;
priv_usFatalError = usFatalError;
if (!bError && usFatalError == PERIODICCLOUDCOVTHREAD_OK)
{

priv_dCloudCoverage = dCloudCoverage;
priv_ulTimeOfLastCompleteDataset = usTimeOfLastCompleteDataset;

}
if (usFatalError != PERIODICCLOUDCOVTHREAD_OK)
{

priv_bError = true;
}

/// Set state as running
priv_bThreadIsRunning = true;

/// Unblock semaphores
try
{

priv_cProtectPrivateVariablesSemaphore.vUnblock (ulBlockHandle);
}
catch (...)
{

priv_usFatalError = true;
goto SleepManagementContinue;

}

Store fetched values

Fetched values
from hardware

Technical University of Munich

Page48

How to integrate FS in your certified control loop?

SleepManagementContinue:
/// Sleep management
ulEndtime = time(NULL);
if (ulSleepTimeSec > 0)
{

if (ulEndtime - ulStarttime >= ulSleepTimeSec)
{

continue;
}
else
{

ulSleepTimeSec = ulSleepTimeSec - (ulEndtime - ulStarttime);
}
sleep (ulSleepTimeSec);

}
else
{

struct timespec STime;
STime.tv_sec = 0;
STime.tv_nsec = 40000000; // 40 msec
nanosleep (&STime, NULL);

}
}

return NULL;
}

Timing of
control loop

Technical University of Munich

Page49

FS Operations

TOW2023 - Seminar

g{tÇ~ çÉâ ‹

