TOW2023 Operational Data Transport in the IVS (part 1)

JASON SOOHOO MIT HAYSTACK OBSERVATORY APRIL 30TH – MAY 4^{TH,} 2023

Outline – Part 1

- Overview of data transport
- Networks
 - Topology
 - Performance
 - Network stack and protocols
 - Software tools
 - Operational data transport procedure e-Transfer

With IVS operations how do we get the data from our stations to the Correlators for processing?

- Data recorded to Data Recorder unit
- Modules are pulled from the recorder and brought to shipping
- Shipments can take days/weeks to arrive
- Correlator centers then process the modules

Overview – e-Transfer data

- Data recorded to Data recording unit
- The data on the recorder or server are prepared for network transfers
- Transfer of data is initiated and sent to Correlator data servers over the network
 - Transfer rates will vary (discussed later on)
- Correlator centers then process the files

Networks

Network Topology

Local network

Local router and firewall

Uplink to edge network

Edge network to Internet backbone

Everyone Else!

Resource availability and bottlenecks!

Networks

Resource availability and bottlenecks

- Networks are a shared resource, using more than available will impact performance creating a bottle across the network for everyone using it.
- Correlator data volumes are shared with other stations. We need to be sure there is enough data resources available for your data.

session data size <= data resource available

Networks

Resource availability and bottlenecks

- Networks are a shared resource, using more than available will impact performance creating a bottle across the network for everyone using it.
- Correlator data volumes are shared with other stations. We need to be sure there is enough data resources available for your data.

Input streams <= total throughput

10Gbps total throughput

session data size <= data resource available

Total data volume 100TB

Network Speed vs Transfer Time

Network Speed	T2/OHIG Session 900GBytes	R1/R4 Session ~2 TeraBytes	RDV/R&D Session ~4 TeraBytes
100Mbps	~20hrs	~45hrs	~55.5hrs
1Gbps	~2hrs	~4.5hrs	~5.5hrs
10Gbps	~12min	~26min	~53min

However network speeds will vary depending on factors of optimization.

(Transport protocol, frame size, routing, etc.)

Network/Protocol Stack

The network/protocol stack is a conceptual model for splitting up the communication over a network into layers.

Protocols and **TCP/IP Model OSI Model** Services 7 HTTP, HTTPS, FTP, Presentation 6 DHCP, PNG Session 5 Transport TCP, UDP Transport 4 Internet IP, ARP, ICMP 3 Datalink 2 Link Ethernet, Wi-Fi 1

Network Transport Protocols

TCP - Transmission Control Protocol

- Established connection/handshaking
- Data sequenced
- Data retransmission/ Successful delivery
- Slow but complete data transmitted
- Information/File application where all bits matter

UDP – User Datagram Protocol

- Connection not needed
- Does not sequence data
- No retransmission of data
- Fast but with risk
- Streaming application where loss is acceptable

UDT - UDP-based Data Transfer Protocol

- Application layer over UDP
- Connection oriented
- Data sequenced
- Data retransmitted
- Faster than TCP and more reliable than UDP alone

Software

Data Transferring Tools

- Linux utilities
 - ftp/sftp, rsync, scp, etc.
- Tsunami transfer software
 - http://tsunami-udp.sourceforge.net/
- jive5AB/m5copy
 - https://github.com/jive-vlbi/jive5ab
- etransfer server/client system
 - https://github.com/jive-vlbi/etransfer

Network Testing Tools

- Linux utilities
 - ping, traceroute, etc
- Iperf
 - https://iperf.fr

Operational Data Transport Procedure – e-Transfer

- 1. Data preparation
- 2. Verify Correlator destination on IVS schedule
 - https://ivscc.gsfc.nasa.gov/sessions/2023/
- 3. Verify disk space bandwidth availability
 - http://www3.mpifr-bonn.mpg.de/cgi-bin/showtransfers.cgi
- 4. Update e-transfer active transfers site
 - Send start message to Transfer folder
- 5. Begin data transfers
- 6. Complete data transfers
 - Send stop message to Transfer folder
- 7. WAIT! Please hold data until Correlator
- 8. Release data after Correlator center releases its report