
Methods of VGOS post-processing

Dan Hoak (for the Haystack correlation team)

TOW Correlator Workshop May 4-5 2023

VGOS post-processing: Haystack environment

1

Experience is based on VR / VO sessions from the past 2 years

Basic outline:
• Mike Titus correlates and generates mk4 files
• John/Dan run postproc scripts and generate control file, script output,

diagnostic plots
• Mike runs the final pseudo-Stokes Ixy batch_fourfit job and builds the vgosDB
• John/Dan run proxy cc scripts to build PCMT files, add to v4 vgosDB
• Dhiman/Arthur check the vgosDB with nuSolve
• Mike sends the report and vgosDB to Sergei, who makes final checks
• If everything works, submit report

For the post-processing, only about 1-in-5 experiments are “turn-the-crank”
• This is after considerable (sometimes heroic) work by Mike to solve problems

at the correlation stage!
• VGOS correlation & processing is an ongoing R&D effort!

VGOS post-processing: Haystack environment

2

We typically run the post-processing scripts on a 12-core machine running
Ubuntu 22.04.

• python 3.10 (backward compatible to 2.7.5)
• numpy 1.21 (backward compatible to 1.7.1)
• matplotlib 3.5.1(backward compatible to 1.2.0)

For a 24-hr VGOS session with 8-11 stations and 1872 scans:
• ffres2pcp can take 6-8 hours
• fourphase can take 12-18 hours
• batch_fourfit can take 6 hours

Can finish the post-processing in ~3-4 days.

Running vgoscf_generate seldom works when the network includes
Australia; hard to find a reference station for ffres2pcp that has good
coverage with Europe, North America and Australia. I almost always run the
two scripts separately.

VGOS post-processing: ffres2pcp

3

VGOS post-processing: ffres2pcp

4

First I edit the initial control file:
• Remove any ignored channels
• Remove old y-x delay/offsets
• Remove pcphases for stations not in the experiment
• Edit ionospheric search as needed:

~/geodesy/3825$ ffres2pcp.py cf_3825_MEHLNSV_dh1 M EHLNSV .
-n 16 -s 12 -a 30 -d 5 -q 5 -p

ion_npts 75
ion_win -100.0 100.0

(this is good enough for
ffres2pcp and fourphase)

And then give it a try:

VGOS post-processing: ffres2pcp

5

First I edit the initial control file:
• Remove any ignored channels
• Remove old y-x delay/offsets
• Remove pcphases for stations not in the experiment
• Edit ionospheric search as needed:

~/geodesy/3825$ ffres2pcp.py cf_3825_MEHLNSV_dh1 M EHLNSV .
-n 16 -s 12 -a 30 -d 5 -q 5 -p

ion_npts 75
ion_win -100.0 100.0

(this is good enough for
ffres2pcp and fourphase)

The SNR for cross-hands on
short baselines (GE) can be
low, and tag-along stations
might have very few scans
available; don’t waste them!

The difference in dTEC
among pol-prods for long
baselines can be large

And then give it a try:

VGOS post-processing: ffres2pcp

6

First I edit the initial control file:
• Remove any ignored channels
• Remove old y-x delay/offsets
• Remove pcphases for stations not in the experiment
• Edit ionospheric search as needed:

~/geodesy/3825$ ffres2pcp.py cf_3825_MEHLNSV_dh1 M EHLNSV .
-n 16 -s 12 -a 30 -d 5 -q 5 -p

ion_npts 75
ion_win -100.0 100.0

(this is good enough for
ffres2pcp and fourphase)

And then give it a try:

This will generate a sub-directory:

~/geodesy/3825/scratch/YYYYMMDD-HHMMSS/3825

…make sym-links to everything in the top experiment directory, and start generating
type-2 fringe files. I often rename the YYYYMMDD folder to ‘ffres1’.

VGOS post-processing: ffres2pcp

7

ffres2pcp will do a bunch of things:
• Figures out which baselines are available from the reference station /

remote stations you selected
• It does this by scanning for type-1 mk4 files (correl files), and only

checks the two characters in the filenames, so it’s fast
• Looks for root files and assembles a list of scans
• Searches for pre-existing fringe files with the right baselines, pol-products,

and control file
• This is slow, because it has to check the control file hash in the fringe

file and check the pol-product
• Can take a long time if there are many fringe files to open!

• Once it has a list of scans with correl files for the selected baselines, it runs
fourfit to fringe XX, XY, YX, YY

Finding baselines
Baselines: ['MV', 'MN', 'ME', 'LM', 'MS', 'HM']
Finding root files
Found 3182 root files.
4639 fringe files after baseline selection
Found 4639 previously generated fringe files
0 fringe files remaining after control file hash filter
load_and_batch_fourfit: will run a total of 18556 fourfit processes

VGOS post-processing: ffres2pcp

8

Ok, go work on something else while it runs…

Once the fourfit jobs are finished, ffres2pcp will open the fringe files, and select
good scans for each scan/baseline based on minimum SNR among the pol-prods,
the qcodes, and the difference in dTEC among the pol-prods.

When it’s finished, use
summarize_report.py to parse the
output ffres2pcp-report json file and
generate diagnostic plots.

Check the scan selections and the
changes to the pcphases!

This is what success looks like

Note that ffres2pcp will use a Pareto front
calculation to only choose the scans with
the best SNR and dTEC deviation. So you
can relax the dTEC constraint if you want to
make sure you get scans. You can always
rerun with tighter constraints!

VGOS post-processing: ffres2pcp

9

If you need to kill the job, you can restart it without losing your previous work!
 ffres2pcp will check for previously generated fringe files that match the

baselines and control file
 But, remember to use the pre-existing scratch directory!

~/geodesy/3825/scratch/YYYYMMDD-HHMMSS/3825$ ffres2pcp.py
cf_3825_MEHLNSV_dh1 M EHLNSV . -n 16 -s 12 -a 30 -d 5 -q 5 –p -w

Use the –w flag to run ffres2pcp
without creating a scratch directory (it
will refuse to run in a directory with
‘scratch’ or ‘prepass’ in the path)

This will pick up the fringe-fitting jobs where you left off.

You can also rerun with different SNR, qcode, or ddTEC limits, if you need to relax
them.

If ffres2pcp fails to find any acceptable fringe files for a particular baseline:
• Check that fringe files were produced; for example, if ffres2pcp failed to

generate pcphases for Hobart:

• Do the fringe files make sense?
• Do you need to expand the ffres2pcp limits?
• If there are no fringe files, try running fourfit by hand for a few scans

VGOS post-processing: ffres2pcp

10

If you need to kill the job, you can restart it without losing your previous work!
 ffres2pcp will check for previously generated fringe files that match the

baselines and control file
 But, remember to use the pre-existing scratch directory!

$ ls */LM.X.*
...
$ fplot */LM.X.*

~/geodesy/3825/scratch/YYYYMMDD-HHMMSS/3825$ ffres2pcp.py
cf_3825_MEHLNSV_dh1 M EHLNSV . -n 16 -s 12 -a 30 -d 5 -q 5 –p -w

VGOS post-processing: ffres2pcp

11

Be careful expanding the ddTEC limit:
 Varying dTECs between the pol-products can bias the pcphases
 If you really can’t find enough scans for a particular station, maybe try

using a different reference station? (Eg, for Hobart or Katherine, use
Kokee instead of GGAO/MGO)

 This will run a bunch of fourfit jobs, but only for those baselines

Not enough scans

VGOS post-processing: ffres2pcp

12

Be careful expanding the ddTEC limit:
 Varying dTECs between the pol-products can bias the pcphases
 If you really can’t find enough scans for a particular station, maybe try

using a different reference station? (Eg, for Hobart or Katherine, use
Kokee instead of GGAO/MGO)

 This will run a bunch of fourfit jobs, but only for those baselines

10 scans; better!

~/geodesy/3825/scratch/YYYYMMDD-HHMMSS/3825$ ffres2pcp.py
cf_3825_MEHLNSV_pcphases H L . -n 16 -s 10 -a 30 -d 5 -q 5 –p -w

Use the control file generated by
the first run of pcphases to take
advantage of the updated
pcphases for Kokee!

Remember to copy-paste the Hobart
pcphases from cf_HL_pcphases into
cf_MEHLNSV_pcphases.

VGOS post-processing: ffres2pcp

13

Once you have pcphases for each station, check the comparison plots with the a
priori phases.

This looks good:

VGOS post-processing: ffres2pcp

14

Once you have pcphases for each station, check the comparison plots with the a
priori phases.

This is fine, Kokee fixed their band-B R2DBE:

VGOS post-processing: ffres2pcp

15

Once you have pcphases for each station, check the comparison plots with the a
priori phases.

Hobart has a channel with RFI:

VGOS post-processing: ffres2pcp

16

I nearly always have to use Kokee for baselines to Australia; there just aren’t
enough scans to GGAO/MGO.

The dTEC threshold always has to be expanded for those stations.

ffres2pcp doesn’t typically crash, but if it has to check many, many fringe files
for the right control file hash it can take a long time before it starts running fourfit
jobs.

(Caveat: this week we discovered a bug that blew up the allocated memory if
there were too many good scans!)

Always a good idea to check the pcphases control file for sane values, no line
breaks, etc. You can also use it to fourfit a few scans (any baseline) by hand
and check that the residual phases are flat!

What’s your experience?

VGOS post-processing: fourphase

17

VGOS post-processing: fourphase

18

Once I’ve generated a good set of pcphases, I move back to the top directory and
run fourphase.py

• fourphase will go through much of the same routine as ffres2pcp:
create a scratch directory, check for baselines, assemble a list of scans,
check for previously generated fringe files with the correct pol-products and
control file hash, and then fire off a bunch of fourfit jobs

• It uses all the baselines, so the selection of reference station is not critical
• It takes a long time

~/geodesy/3825$ fourphase.py cf_3825_MEHLNSV_pcphases M EHLNSV .
-n 16 -s 15 -a 30 -d 5 -p -b 314-1000

VGOS post-processing: fourphase

19

Once I’ve generated a good set of pcphases, I move back to the top directory and
run fourphase.py

• fourphase will go through much of the same routine as ffres2pcp:
create a scratch directory, check for baselines, assemble a list of scans,
check for previously generated fringe files with the correct pol-products and
control file hash, and then fire off a bunch of fourfit jobs

• It uses all the baselines, so the selection of reference station is not critical
• It takes a long time

~/geodesy/3825$ fourphase.py cf_3825_MEHLNSV_pcphases M EHLNSV .
-n 16 -s 15 -a 30 -d 5 -p -b 314-1000

Protip: if you have a 24hr experiment,
there are plenty of scans, you can limit
the number you fringe-fit using the
begin_scan_limit and end_scan_limit.

Here, Hobart joined at 314-1211, so I
only used the last third of the session
(still 22k jobs).

VGOS post-processing: fourphase

20

Once I’ve generated a good set of pcphases, I move back to the top directory and
run fourphase.py

• fourphase will go through much of the same routine as ffres2pcp:
create a scratch directory, check for baselines, assemble a list of scans,
check for previously generated fringe files with the correct pol-products and
control file hash, and then fire off a bunch of fourfit jobs

• It uses all the baselines, so the selection of reference station is not critical
• It takes a long time

fourphase will:
• fringe every scan/baseline in the requested range
• select good scans based on the SNR, ddTEC parameters (-a parameter)
• rerun the fringe search with a modified control file (“ion-search”)

• (this step is probably redundant)
• then fix the ion-search for each scan/baseline at the weighted mean of dTEC

and fringe the four pol-prods again
• calculate the y-x delay and phase offset for that scan/baseline using the

mean of [YY-XY,YX-XX] multiband delay or residual phase (reverse for remote
station)

• then average the results from the set of good scans

~/geodesy/3825$ fourphase.py cf_3825_MEHLNSV_pcphases M EHLNSV .
-n 16 -s 15 -a 30 -d 5 -p -b 314-1000

VGOS post-processing: fourphase

21

Again, the SNR and differential dTEC limits are important for some baselines.
Unfortunately there aren’t plots available check the SNR-ddTEC parameter space
like in ffres2pcp (but it should be more or less the same).

We’re working to improve the logfile and error messaging in fourphase to make it
more helpful when it fails to find good scans for a particular station.

If fourphase fails for a particular station:
INFO:vpal.fourphase_lib:station: G had 362 total data points for determining delay/phase offsets of which 5 were cut
INFO:vpal.fourphase_lib:station: E had 554 total data points for determining delay/phase offsets of which 3 were cut
INFO:vpal.fourphase_lib:station: H had 300 total data points for determining delay/phase offsets of which 2 were cut
INFO:vpal.fourphase_lib:station: L had 12 total data points for determining delay/phase offsets of which 0 were cut
INFO:vpal.fourphase_lib:station: N had 348 total data points for determining delay/phase offsets of which 12 were cut
INFO:vpal.fourphase_lib:station: P had 0 total data points for determining delay/phase offsets of which 0 were cut
INFO:vpal.fourphase_lib:station: S had 568 total data points for determining delay/phase offsets of which 3 were cut
INFO:vpal.fourphase_lib:station: T had 640 total data points for determining delay/phase offsets of which 4 were cut
INFO:vpal.fourphase_lib:station: Y had 640 total data points for determining delay/phase offsets of which 19 were cut
ERROR:vpal.fourphase_lib:Error: station P has no useable delay offset data to compute mean Y-X delay offset.
ERROR:vpal.fourphase_lib:Error: station P has no useable delay offset data to compute std. dev. of Y-X delay offset.
ERROR:vpal.fourphase_lib:Error: station P has no useable phase offset data to compute mean Y-X phase offset.
ERROR:vpal.fourphase_lib:Error: station P has no useable phase offset data to compute std. dev of Y-X phase offset.

VGOS post-processing: fourphase

22

Again, the SNR and differential dTEC limits are important for some baselines.
Unfortunately there aren’t plots available check the SNR-ddTEC parameter space
like in ffres2pcp (but it should be more or less the same).

We’re working to improve the logfile and error messaging in fourphase to make it
more helpful when it fails to find good scans for a particular station.

If fourphase fails for a particular station:

• Check for fringe files along some expected baselines; for Katherine (P), check for HP
baselines: $ ls */HP.X.*

• What is the min SNR among the pol-products? What is the spread of dTECs?
• Did it generate any “ion-fixed-HP” control files? $ ls */*ion-fixed-HP
• If not, it never found scans within the specified min-SNR, max-ddTEC, qcode parameters.

INFO:vpal.fourphase_lib:station: G had 362 total data points for determining delay/phase offsets of which 5 were cut
INFO:vpal.fourphase_lib:station: E had 554 total data points for determining delay/phase offsets of which 3 were cut
INFO:vpal.fourphase_lib:station: H had 300 total data points for determining delay/phase offsets of which 2 were cut
INFO:vpal.fourphase_lib:station: L had 12 total data points for determining delay/phase offsets of which 0 were cut
INFO:vpal.fourphase_lib:station: N had 348 total data points for determining delay/phase offsets of which 12 were cut
INFO:vpal.fourphase_lib:station: P had 0 total data points for determining delay/phase offsets of which 0 were cut
INFO:vpal.fourphase_lib:station: S had 568 total data points for determining delay/phase offsets of which 3 were cut
INFO:vpal.fourphase_lib:station: T had 640 total data points for determining delay/phase offsets of which 4 were cut
INFO:vpal.fourphase_lib:station: Y had 640 total data points for determining delay/phase offsets of which 19 were cut
ERROR:vpal.fourphase_lib:Error: station P has no useable delay offset data to compute mean Y-X delay offset.
ERROR:vpal.fourphase_lib:Error: station P has no useable delay offset data to compute std. dev. of Y-X delay offset.
ERROR:vpal.fourphase_lib:Error: station P has no useable phase offset data to compute mean Y-X phase offset.
ERROR:vpal.fourphase_lib:Error: station P has no useable phase offset data to compute std. dev of Y-X phase offset.

(until recently there was a bug in the config handling, the –d parameter was not being used)

VGOS post-processing: fourphase

23

Ok, hopefully now fourphase has finished, the report json file is generated, all
stations have some scans, and you can run summarize_report.py to check the
plots.

VGOS post-processing: fourphase

24

Ok, hopefully now fourphase has finished, the report json file is generated, all
stations have some scans, and you can run summarize_report.py to check the
plots.

This is good!

VGOS post-processing: fourphase

25

Ok, hopefully now fourphase has finished, the report json file is generated, all
stations have some scans, and you can run summarize_report.py to check the
plots.

This is…ok

VGOS post-processing: fourphase

26

Ok, hopefully now fourphase has finished, the report json file is generated, all
stations have some scans, and you can run summarize_report.py to check the
plots.

Compare the initial control file, or one from a recent experiment, with the pstokes file
generated by fourphase.

• Have the pc_delay_y and pc_phase_offset_y parameters changed?

Old:

New:

if station L
pc_delay_x 0.0
pc_delay_y 0.004 * (ns) estimated error is +/- 0.003
pc_phase_offset_x 0.0
pc_phase_offset_y -38.7 * (deg) estimated error is +/- 23.2

if station L
pc_delay_x 0.0
pc_delay_y 0.008 * (ns) estimated error is +/- 0.004
pc_phase_offset_x 0.0
pc_phase_offset_y -53.2 * (deg) estimated error is +/- 3.8

VGOS post-processing: fourphase

27

Ok, hopefully now fourphase has finished, the report json file is generated, all
stations have some scans, and you can run summarize_report.py to check the
plots.

Compare the initial control file, or one from a recent experiment, with the pstokes file
generated by fourphase.

• Have the pc_delay_y and pc_phase_offset_y parameters changed?

Lots of room for improvement in this script! But it is critical to get a large distribution
of y-x delays/offsets so the linear polarizations can be summed coherently into
pseudo-Stokes-I. (Note: we don’t correct for amplitude, only delay and phase!)

What kind of problems have you encountered?

VGOS post-processing: fourphase

28

VGOS post-processing: batch_fourfit

29

This one is usually pretty easy (the IONEX predictions are your friend!):

When it’s done, check the:
• phase residuals (and range of dTECs for each baseline)
• multiband delay for each baseline
• G and H codes

For phase residuals, I typically remove the channels if:
• Mean phase residual is > 10 deg
• A clear outlier in variance
• Clearly bimodal (indicative of RFI)
• Bands A & D are important for ionospheric search, so think twice

G,H codes: greater than 10% of scans is too many. Figure out why!

Multiband delay should be flat & not close to the limits of the search range.

~/geodesy/3825$ get_ionex_dtec_bounds.py /data-sc03/difxoper/vr2206/
/data-sc16/geodesy/ionex/ vr2206_ionex_tec.json

~/geodesy/3825$ batch_fourfit.py cf_3825_MEHLNSV_pstokes MEHLNSV I .
-n 16 -p -t vr2206_ionex_tec.json

VGOS post-processing: phase residuals

30

The Onsalas often have some time-dependent modulation of the phases in band C,D

VGOS post-processing: phase residuals

31

Hobart channels g,h are often
noisy; dTEC range is large.

If you see an interesting feature,
inspect a few fringe plots! Easy
to select fringe plots for a
particular baseline by hour with
fplot and scroll through:

$ fplot 351-12*/LH.X.*

VGOS post-processing: phase residuals

32

Hobart can also have channels in band D with large mean residuals. There are no
short baselines to Hobart, so the scatter of each channel is large. Makes it hard to
diagnose problems!

VGOS post-processing: phase residuals

33

NyAlesund has short baselines to use for comparison, so the
variance is smaller, but they do have a few problem channels.

VGOS post-processing: aedit tools

34

aedit is a useful HOPS tool for inspecting fringe properties. Here’s a quick example
for plotting multiband delays for the final pseudo-Stokes fringe results:

$ alist –o alist.test .
alist: Successfully wrote 34916 A-file
lines to file alist.test

$ aedit
aedit> read alist.test
aedit> summ 2

First, build an alist file for the experiment. This command
will sweep up all the fringe files in the directory (it takes
some time).

Start aedit
Read the alist file
Print a summary of the data in the file

VGOS post-processing: aedit tools

35

aedit is a useful HOPS tool for inspecting fringe properties. Here’s a quick example
for plotting multiband delays for the final pseudo-Stokes fringe results:

SUMMARY OF UNFLAGGED DATA IN MEMORY

Total number of unflagged fringe records = 34916

Earliest scan: 122-348-180000
Latest scan: 122-349-175848
Earliest procdate: 123-077-2124
Latest procdate: 123-096-2218
Stations present: EGHLNPSTY
Baselines present: GT SY TE TY EY GY GS GE SE NT NS NY LH HP LP HY LS

PS LT PT GH NE HE HN HT HS LN PN PY PE LE LY GP GL
Frequencies present: X
Polarizations present: YY XY YX XX
SNR extrema: 5.216 740.6
Experiments present: 3826
Sources present: 0003-066 0017+200 0035-252 0059+581 0109+224 0119+115

0131-522 0133+476 0202+319 0215+015 0235+164 0322+222 0332-403
0454-234 0458-020 0537-441 0552+398 0556+238 0606-223 0613+570
...
1929+226 1954-388 2008-159 2052-474 2059+034 2113+293 2126-158
2149+056 2214+241 2227-088 2229+695 2255-282 2309+454 2319+317
2325+093 2329-384 3C274 3C371 3C418 CTA26 NRAO150
OJ287

Quality code summary:
A B C D E F G H 0 1 2 3 4 5 6 7 8 9 ?
0 0 0 10 0 0 945 2760 2959 1 1 7 20 166 727 3050 9058 15212 0

There are 0 flagged records present

VGOS post-processing: aedit tools

36

aedit is a useful HOPS tool for inspecting fringe properties. Here’s a quick example
for plotting multiband delays for the final pseudo-Stokes fringe results:

SUMMARY OF UNFLAGGED DATA IN MEMORY

Total number of unflagged fringe records = 34916

Earliest scan: 122-348-180000
Latest scan: 122-349-175848
Earliest procdate: 123-077-2124
Latest procdate: 123-096-2218
Stations present: EGHLNPSTY
Baselines present: GT SY TE TY EY GY GS GE SE NT NS NY LH HP LP HY LS

PS LT PT GH NE HE HN HT HS LN PN PY PE LE LY GP GL
Frequencies present: X
Polarizations present: YY XY YX XX
SNR extrema: 5.216 740.6
Experiments present: 3826
Sources present: 0003-066 0017+200 0035-252 0059+581 0109+224 0119+115

0131-522 0133+476 0202+319 0215+015 0235+164 0322+222 0332-403
0454-234 0458-020 0537-441 0552+398 0556+238 0606-223 0613+570
...
1929+226 1954-388 2008-159 2052-474 2059+034 2113+293 2126-158
2149+056 2214+241 2227-088 2229+695 2255-282 2309+454 2319+317
2325+093 2329-384 3C274 3C371 3C418 CTA26 NRAO150
OJ287

Quality code summary:
A B C D E F G H 0 1 2 3 4 5 6 7 8 9 ?
0 0 0 10 0 0 945 2760 2959 1 1 7 20 166 727 3050 9058 15212 0

There are 0 flagged records present

There are four polarization products
in the alist records; Stokes I is
actually recorded as YX

VGOS post-processing: aedit tools

37

aedit is a useful HOPS tool for inspecting fringe properties. Here’s a quick example
for plotting multiband delays for the final pseudo-Stokes fringe results:

SUMMARY OF UNFLAGGED DATA IN MEMORY

Total number of unflagged fringe records = 34916

Earliest scan: 122-348-180000
Latest scan: 122-349-175848
Earliest procdate: 123-077-2124
Latest procdate: 123-096-2218
Stations present: EGHLNPSTY
Baselines present: GT SY TE TY EY GY GS GE SE NT NS NY LH HP LP HY LS

PS LT PT GH NE HE HN HT HS LN PN PY PE LE LY GP GL
Frequencies present: X
Polarizations present: YY XY YX XX
SNR extrema: 5.216 740.6
Experiments present: 3826
Sources present: 0003-066 0017+200 0035-252 0059+581 0109+224 0119+115

0131-522 0133+476 0202+319 0215+015 0235+164 0322+222 0332-403
0454-234 0458-020 0537-441 0552+398 0556+238 0606-223 0613+570

1929+226 1954-388 2008-159 2052-474 2059+034 2113+293 2126-158
2149+056 2214+241 2227-088 2229+695 2255-282 2309+454 2319+317
2325+093 2329-384 3C274 3C371 3C418 CTA26 NRAO150
OJ287

Quality code summary:
A B C D E F G H 0 1 2 3 4 5 6 7 8 9 ?
0 0 0 10 0 0 945 2760 2959 1 1 7 20 166 727 3050 9058 15212 0

There are 0 flagged records present

We can distinguish different groups
of fringe files with the processing
date. We did the Stokes I batch job
last, so let’s filter on procdates from
DOY 096.

VGOS post-processing: aedit tools

38

aedit is a useful HOPS tool for inspecting fringe properties. Here’s a quick example
for plotting multiband delays for the final pseudo-Stokes fringe results:

$ alist –o alist.test .
alist: Successfully wrote 34916 A-file
lines to file alist.test

$ aedit
aedit> read alist.test

aedit> summ 2

aedit> procrange 23096-000000 23096-
235959

aedit> ed in

aedit> summ 2

First, build an alist file for the experiment. This command
will sweep up all the fringe files in the directory (it takes
some time).

Start aedit
Read the alist file
This will print a statement about how many records have
been read from the alist file.

Print a summary of the data in the file

Select files with a procdate between 2023-096-00:00:00
and 2023-096-23:59:59

Edit the inputs, or remove files that are flagged as outside
of the selected procrange. This will print a statement
about how many records are left.

Print another summary

VGOS post-processing: aedit tools

39

aedit is a useful HOPS tool for inspecting fringe properties. Here’s a quick example
for plotting multiband delays for the final pseudo-Stokes fringe results:

SUMMARY OF UNFLAGGED DATA IN MEMORY

Total number of unflagged fringe records = 4824

Earliest scan: 122-348-180000
Latest scan: 122-349-175848
Earliest procdate: 123-096-1746
Latest procdate: 123-096-2218
Stations present: EGHLNPSTY
Baselines present: TE SY TY GS GT GE SE EY GY NT NS NY LH HP LP HY PS

LS PT LT GH NE HN HT HS HE PN LN PY PE LE LY GP GL
Frequencies present: X
Polarizations present: YX
SNR extrema: 5.944 740.6
Experiments present: 3826
Sources present: 0003-066 0017+200 0035-252 0059+581 0109+224 0119+115

0131-522 0133+476 0202+319 0215+015 0235+164 0322+222 0332-403
0454-234 0458-020 0537-441 0552+398 0556+238 0606-223 0613+570
1639-062 1741-038 1749+096 1751+288 1806+456 1846+322 1908-201
1929+226 1954-388 2008-159 2052-474 2059+034 2113+293 2126-158
2149+056 2214+241 2227-088 2229+695 2255-282 2309+454 2319+317
2325+093 2329-384 3C274 3C371 3C418 CTA26 NRAO150
OJ287

Quality code summary:
A B C D E F G H 0 1 2 3 4 5 6 7 8 9 ?
0 0 0 2 0 0 168 469 7 0 0 1 6 15 87 443 2436 1190 0

There are 30092 flagged records present

Now we have a set of 4824 files with
a narrow range of procdates and a
single polarization (which is actually
Stokes I)

VGOS post-processing: aedit tools

40

aedit is a useful HOPS tool for inspecting fringe properties. Here’s a quick example
for plotting multiband delays for the final pseudo-Stokes fringe results:

$ alist –o alist.test .
alist: Successfully wrote 34916 A-file
lines to file alist.test

$ aedit
aedit> read alist.test

aedit> summ 2

aedit> procrange 23096-000000 23096-
235959

aedit> ed in

aedit> summ 2

aedit> sort freq
aedit> sort base
aedit> sort time
aedit> write alist.test.Ixy

First, build an alist file for the experiment. This command
will sweep up all the fringe files in the directory (it takes
some time).

Start aedit
Read the alist file
This will print a statement about how many records have
been read from the alist file.

Print a summary of the data in the file

Select files with a procdate between 2023-096-00:00:00
and 2023-096-23:59:59

Edit the inputs, or remove files that are flagged as outside
of the selected procrange. This will print a statement
about how many records are left.

Print another summary

Save an alist file with the Ixy fringe records, sorted by
frequency, baseline, and time.

VGOS post-processing: aedit tools

41

aedit is a useful HOPS tool for inspecting fringe properties. Here’s a quick example
for plotting multiband delays for the final pseudo-Stokes fringe results:

aedit> dev /xw
aedit> axis mbd
aedit> grid 2 5
aedit> qcode G H 1-9
aedit> ed in

aedit> plot

Select a device to plot (xwin)
Choose the yaxis value (multiband delay)
Set up a grid of 2 columns, 5 rows
Select qcodes G, H, and 1-9 (no nondetections)
Edit inputs to apply the flags

Plot!

VGOS post-processing: aedit tools

42

aedit is a useful HOPS tool for inspecting fringe properties. Here’s a quick example
for plotting multiband delays for the final pseudo-Stokes fringe results:

aedit> dev /xw
aedit> axis mbd
aedit> grid 2 5
aedit> qcode G H 1-9
aedit> ed in

aedit> plot

Select a device to plot (xwin)
Choose the yaxis value (multiband delay)
Set up a grid of 2 columns, 5 rows
Select qcodes G, H, and 1-9 (no nondetections)
Edit inputs to apply the flags

Plot!

VGOS post-processing: aedit tools

43

aedit is a useful HOPS tool for inspecting fringe properties. Here’s a quick example
for plotting multiband delays for the final pseudo-Stokes fringe results:

aedit> dev /xw
aedit> axis mbd
aedit> grid 2 5
aedit> qcode G H 1-9
aedit> ed in

aedit> plot

Select a device to plot (xwin)
Choose the yaxis value (multiband delay)
Set up a grid of 2 columns, 5 rows
Select qcodes G, H, and 1-9 (no nondetections)
Edit inputs to apply the flags

Plot!

Smoothly varying MBD between
[-2,2] nsec on the EY baseline

VGOS post-processing: aedit tools

44

aedit is a useful HOPS tool for inspecting fringe properties. Here’s a quick example
for plotting multiband delays for the final pseudo-Stokes fringe results:

aedit> dev /xw
aedit> axis mbd
aedit> grid 2 5
aedit> qcode G H 1-9
aedit> ed in

aedit> plot

Select a device to plot (xwin)
Choose the yaxis value (multiband delay)
Set up a grid of 2 columns, 5 rows
Select qcodes G, H, and 1-9 (no nondetections)
Edit inputs to apply the flags

Plot!

VGOS post-processing: aedit tools

45

aedit is a useful HOPS tool for inspecting fringe properties. Here’s a quick example
for plotting multiband delays for the final pseudo-Stokes fringe results:

aedit> dev /xw
aedit> axis mbd
aedit> grid 2 5
aedit> qcode G H 1-9
aedit> ed in

aedit> plot

Select a device to plot (xwin)
Choose the yaxis value (multiband delay)
Set up a grid of 2 columns, 5 rows
Select qcodes G, H, and 1-9 (no nondetections)
Edit inputs to apply the flags

Plot!

LS baseline has strange curves,
probably the Hobart position is
wrong

VGOS post-processing: done

46

You’ve built the control file for the experiment!

Now it’s off to a final batch_fourfit job and building the vgosDB.

Anything else?

VGOS post-processing: looking forward

47

The VGOS network is growing:

Currently: GEHILMNSTVY (11 stations, 55 possible baselines)

+ P (Katherine)
+ Santa Maria, Fortaleza, AuScope #3...
...very soon we'll have 15 stations and 105 possible baselines!

Need to use:
• Smarter/narrower ionospheric search methods, to speed things up
• Calibration scans for pcphases and y-x delay/offset, to reduce the number of

fourfit calls

Getting help: hops-dev@mit.edu

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48

