VLBI Basics

Pedro Elosegui, MIT Haystack Observatory

With thanks to many of you here and “out there”
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Outline for today

* Motivation: WHY do we do VLBI?
* Climate change is the defining challenge of our time

e Hands-on: HOW do we do VLBI?

e Geodetic radio telescopes

* VLBI vs. GPS concept

* Station requirements

* VLBI digitization

e VLBI correlation

* Geodetic post-processing and VGOS precision
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Rapid polar changes: Arctic sea ice loss

[NSIDC/NASA]



Rapid polar changes: Ice sheet mass loss
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Global Mean Sea Level Variations from Satellite Altimetry
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Why VLBI?

CLIMATE CHANGE IS THE DEFINING CHALLENGE OF OUR TIME

* Climate needs geodesy, geodesy needs VLBI/VGOS, VGOS
needs you collecting the very best quality data you can.

* While staying humble, the contribution of each one of you (of
us all, really) is terribly important.

e But please do not panic if you miss one scan, one session,
something bigger; reflect, learn, connect, come back stronger.




Outline for today

e Hands-on: HOW do we do VLBI?

* Geodetic radio telescopes

* VLBI vs. GPS concept

* Station requirements

* VLBI digitization

e Correlation

e Geodetic post-processing and VGOS precision
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= Noise
What is VLB ... I? °

Very Long Bas

Hfdmgen maser clock
(accuracy 1 sec in
1 million years)
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VGOS virtues (vs. “legacy”) in a nutshell
legacy | Small, fast, rigid
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Basic elements of VLBI (geodesy)

* Antennas

* Receivers

* Analog and digital stages

e Recorders and data transport
* Correlation, post-processing

* Imaging, positioning, orientation
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Quasar

The Geodetic Measurement
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High-precision geodetic science

Observation = + Error
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Signal (geometry => position, orientation) rest is all “noise”




Practical VLBI observational goals
High-precision geodesy means observable with

small error
1 1
_ 27T SNR@

» Sensitivity = ability to “see” faint objects (interferometer, Jy)

AS 1 SEFD; - SEFD;
D

» Resolution = ability to “see” detalls in distant objects




What determines sensitivity?

 Amount of energy collected (Ta, gain, efficiency)
— Size and quality of the collecting area

— but cost of bigger antennas tends to increase as D*2.7 (i.e., doubling
antenna diameter raises price by ~6!)

— Bandwidth of the energy spectrum
— sensitivity improves as square root of observed bandwidth, cost effective

* Quietness of the receiving detectors (Tsys)

— many receivers are already approaching quantum noise limits, or are
dominated by atmospheric noise



What determines resolution?
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A few resolution examples

100 m telescope at A=1cm (30 GHz)
— ~20 arcsec

VLA (=35 km) at A=1cm — ~0.1 arcsec
(~2 km on moon; ~2 m at 5000 km)

10,000 km telescope at A=1cm— ~0.2 milli-arcsec
(~40 cm on moon; ~5 mm at 5000 km)

10,000 km telescope at A=1Tmm — ~0.02 miIIi-arcs
(~4 cm on moon; ~0.1 mm at 1000 km)
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Principle of two-ele

interferometer

monochromatic
planar wave
(e.g. a laser)

screen with optical optical screen
two slits screen (front view)




“Nice” (1300+580)

Geodetic VLBI radio sources

« VLBI geodesy requires sources that are
bright, compact, and “stable” both in time
and frequency; a challenge

* The total number of available useful
sources for current geodetic-VLBI
capabilities is small (<~1000)

“Ugly” (3C279)

+ VGOS, with its improved sensitivity,
should significantly improve the number
of available sources



Principle of (geodetic) VLBI/VGOS

 Measure time-of-
axasdl St arrival difference
(delay) accurately

" * mme-level positioning
\R ; requires delay
. N precision of a few

Hydrogen maser clock 6/\ ’\V ' - ,' ; . C plcoseconds (3 pS ) 1

(accuracy 1 sec in
1 million years) High speed
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VGOS station requirements

* Observing “noise” from quasars (contaminated by various
noise sources)

* Measuring a (group) delay (a time measurement) whose
precision is inverse of spanned bandwidth
* Requires wideband feeds and receivers (VGOS 2-14 GHz)
* Multi-band systems to correct for ionosphere delays
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VGOS
broadband
delay

[Niell et al., 2018] F reqguency (G H Z)



VGOS station requirements

* Observing “noise” from quasars (contaminated by various
noise sources)

* Measuring a (group) delay (a time measurement), whose
precision is inversely of spanned bandwidth
* Requires wideband feeds and receivers (VGOS 2-14 GHz)
* Multi-band systems to correct for ionosphere delays
* Low-noise receivers (low SEFD, antenna efficiency, cryogenics)
* Antennas that are small, efficient, and fast (atmosphere)
* High-speed recording for high SNR via large bandwidth (Nyquist)
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VGOS station requirements

* Observing “noise” from quasars (contaminated by various
noise sources)

* Measuring a (group) delay (a time measurement), whose

resolution is inversely of spanned bandwidth

* Requires wideband feeds and receivers (VGOS 2-14 GHz)

e Multi-band systems to correct for ionosphere delays

* Low-noise receivers (low SEFD, antenna efficiency, cryogenics)

* Antennas that are small, efficient, and fast (atmosphere)

* High-speed recording for high SNR via large bandwidth (Nyquist)
* Hydrogen maser frequency standards

 Accurate time synchronization (to ~300 nsec with GPS time)

* Instrumental calibrations (cable delays and phase calibration)



What is the recorded VGOS data?

Answer: precisely timed samples of noise,
usually nearly pure white, Gaussian noise!
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* Interesting fact: normally, the voltage signal is sampled with
only 1 or 2 bits/sample

* Big consequence, it is near incompressible

* But also another important consequence, it is not a big deal
to lose a small amount of data
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Waveform sampled at 2 bits/sample

+Threshold
0

-Threshold

« The spectrum of a Gaussian-statistics bandwidth limited signal may be
completely reconstructed by measuring only the sign of the voltage at
each Nyquist sampling point (Van Vleck 1960)

« Relative to infinite bit sampling, VLBl SNR at 1 and 2 bits/sample is only
63% and 87%, respectively, better compensated by increasing recording
bandwidth



Cross-correlation of weak signals

Receiver 1 N0ise Ny(t) =

Receiver 2 noise ny(t) =

Signal s(t) m—

Correlation is product and accumulation,
pulling signal from the noise:

(s+nq)(s+ny)= s2+n4s+nys+nyny

(Earth rotation adds complexity because
causes time-of-arrival difference and Doppler

shift to continually change)
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Correlators: two flavors of processors
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Combine channels via “bandwidth synthesis”

The goal is to measure the group delay, defined as do/dw

Og = 2TVT,
First, we must measure the observed fringe-phase
difference for each of the observed frequency channels:

For a given delay, the higher the fringe frequency, the
greater time-rate change in phase:

1
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High-precision geodetic science

Observation = + Error
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Signal (geometry => position, orientation) rest is all “noise”




planetary gravitational atiraction luni-solar gravitational tides

"9 Living on a
i dynamic Earth

The ensemble of observables
from a session are only useful
if a detailed and highly
sophisticated model of the

& \ Earth and its messy motions
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Modeling the
dynamic Earth

planetary gravitational attraction luni-solar gravitaticnal tides
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melting of ice

atmospheric ccean loading

pressure

Adapted from Sover et al., (1998)

[tem

Approx Max.

Time scale

Zero order geometry. 6000 km 1 day
Nutation ~ 207 < 18.6 yr
Precession ~ 0.5 arcmin/yr years
Annual aberration. 20" 1 year |
Retarded baseline. 20 m 1 day
Gravitational delay. |4 mas @ 90° from sun 1 year
Tectonic motion. 10 em/yr years
Solid Farth Tide 50 em 12 hr
Pole Tide 2 cm ~1 yr
Ocean Loading 2 cm 12 hr
Atmospheric Loading 2 cm weeks
Post-glacial Rebound several mm/yr years
Polar motion 0.5 arcscc| ~ 1.2 years |
UT1 (Tarth rotation) Several mas Various
lonosphere ~ 2 m at 2 GHz All
Dry Troposphere 2.3 m at zenith | hours to days
Wet Troposphere 0 — 30 cm at zenith All
Antenna structure <10 m. 1em thermal —
Parallactic angle 0.5 turn hours
Station clocks few microsec hours

Source structure

Hem

years




VGOS precision

' WRMS 6.8 ps (~2 mm) ]

il F LATRARMICIVT YIS & | + * -
A * ”'!“ ..lﬂ.liw"‘ .':'f""::{!' R 'nrﬂm] iy
|| I| H'““”’ Fo ,| ||” Wl l:l’ N” ;UI-’:I I

w
o

‘ |
lu '
WP h’ll' II l II ‘ |l4|
|i ‘ h |i, i\ n"| |I I lh“ |U| ¥ h. ||‘, |Il 4
| ll |||”I| ;l | I[ 'H F” “ |I Il ’]

W
o

Postfit delay residuals (ps)

) | _
-60 ' : | i | .
342.75 343.00 343.25
25D MIT X
i) HAYSTACK Day in year 2015

& OBSERVATORY - 18 hours _




VGOS positioning precision
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VGOS network rollout
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Improved Terrestrial Reference Frame and EOP




In summary

* WHY we do VLBI/VGOS

* Climate change is the defining challenge of our time
* HOW we do it

* Geodetic radio telescopes

VLBI vs. GPS concept

* Station requirements

* VLBI digitization

Correlation

e Geodetic post-processing and VGOS precision
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And that’s pretty much it for today

3-9 May 2019
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Have a wonderful TOW week!
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