RIS-Vis: A Novel Visualization Platform for Seismic, Geodetic, and Weather Data Relevant to Antarctic Cryosphere Science

Aishwarya Chakravarthy1,2, Dhiman Mondal1, Pedro Elosegui1, John Barrett1, Chester Ruszczyk1
1MIT Haystack Observatory
2Georgia Institute of Technology
Outline

1. Scientific Background
2. Research Objectives
3. Project Development + Demo
4. Future Steps
Introduction

- Ice shelves **buttress** surrounding **grounded ice**
- Ice shelf collapse causes **sea level rise**

[European Geosciences Union]
Introduction (Continued)

- What causes **ice shelf collapse**?
 - **Climate Change**
 - **Infragravity ocean waves**
- **Ice shelf health** can be monitored using data (seismic, geodetic, weather, etc.)
Seismo-Geodetic Ice Penetrator (SGIP)
Power Spectral Density

Bromirski et al., 2015
Research Objectives

- Develop an automated processing dashboard to visualize simulated SGIP Data:
 - **Seismic Data:** Ice Shelf Vibrations
 - **Geodetic Data:** Ice Shelf Movement
 - **Weather Data:** Ice Shelf Climate
 - **System Monitoring Data:** SGIP Health
Dashboard Proxy Data Sources

- Seismic Data
 - IRIS
- Geodetic Data
 - Nevada Geodetic Laboratory
- Weather Data
 - WISCONSIN
- System Monitoring Data
 - SIDEx
Design Decisions

- Container Manager
- Front-end Dashboard
- Cache
- Back-end Data Downloads
- AP Scheduler
- Back-end Database
Summary of RIS-Vis

- **Dashboard** to track **Ice Shelf health**
- **Monitors:**
 - **Vibrations** of RIS
 - **Movement** of RIS
 - **Climate** of RIS
 - **SGIP** Instrument Health
<table>
<thead>
<tr>
<th>Challenges</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Processing speed</td>
<td>1. a. Cache for home page</td>
</tr>
<tr>
<td>2. Scalability</td>
<td>b. Plotly Resampler</td>
</tr>
<tr>
<td></td>
<td>c. Datashader</td>
</tr>
<tr>
<td></td>
<td>2. a. Modular components</td>
</tr>
<tr>
<td></td>
<td>b. Backing Database</td>
</tr>
</tbody>
</table>
Roadmap

1. Visualize SGiP Data
2. Develop more monitoring capabilities (ex. machine learning)
3. Help scientists predict and mitigate ice shelf collapse

2024
5 - 10 years later...
Thank you!

I want to thank my mentors Dhiman Mondal, Pedro Elosegui, John Barrett, and Chet Ruszczyk for all their guidance throughout the project!

I also want to thank NSF for sponsoring this REU!