Geospace storm-time plumes in the ionosphere observed by the GNSS system

Patty Dzwill Dr. Ercha Aa Dr. Shun-Rong Zhang

Introduction

Goal: To statistically characterize stormenhanced density (SED) plume morphology

Storm-Enhanced Density (SED)

- **Total Electron Content (TEC)** form plume structure that stretches sunward and poleward
- Plasma density gradient structure in the ionosphere during geomagnetic storms
- Dynamic structure, changes in aspects such as location and intensity based on many conditions

Substantial space weather impact

MIT

HAYSTACK

OBSERVATORY

• Movement of plasma and intense TEC gradients can disrupt telecommunications

Instruments and Datasets

Madrigal GNSS TEC

Global Navigation Satellite System

- Madrigal is the upper atmosphere database from CEDAR and Haystack
- Vertical TEC data is calculated from GNSS data from 6000+ ground based receivers
- Binned 1° lat \times 1° lon \times 5 minutes
- 1 TECu = $1e16 \text{ electrons/m}^2$

TIDAS electron density

TEC-based **I**onospheric **D**ata **A**ssimilation **S**ystem

- Input: Assimilated from GNSS TEC, MHISR, and a few other sources
- Output:
 - Full profile of ionosphere above continental United States
 - NmF2: F2 peak density
 - hmF2: height of F2 peak density

Methodology

SED identification from ~50 intense geomagnetic storms

Where minimum Sym-H index < -100 nT (Sym-H index of geomagnetic activity)

2001-03-20	2004-04-03	2013-03-17
2001-04-18	2004-07-22	2013-06-01
2001-04-22	2004-08-30	2013-06-28
2001-10-28	2005-01-21	2015-03-17
2001-11-01	2005-05-08	2015-06-08
2002-03-24	2005-06-12	2015-06-22
2002-05-11	2005-06-22	2015-12-31
2002-08-02	2005-08-24	2016-10-13
2003-06-02	2006-04-14	2017-05-28
2003-07-11	2011-08-05	2017-09-08
2003-08-17	2011-09-26	2018-08-26
2003-10-29	2011-10-24	2021-11-04
2003-10-30	2011-10-25	2022-03-13
2004-01-22	2012-07-15	2023-03-23
2004-02-11	2012-09-30	2023-04-23
2004-03-09	2012-11-13	
4		

30 clear SED plumes

Methodology

SED identification from ~50 intense geomagnetic storms (Minimum Geomagnetic Sym-H index < -100 nT)

Start time

Latitudes

End time

Methodology

Gaussian fitting at each time bin in the interval, over all the latitudes that SED plume spans, and then averaged to derive SED key features

 $\text{TEC}(\phi) = \mathbf{h} \times \exp(-(\phi - \phi_0)^2 / 2\sigma^2) + \mathbf{b} + \mathbf{c} \times \phi + \mathbf{d} \times \phi^2$

Results

SED analysis: 20 Nov 2003

Largest geomagnetic storm in Solar Cycle 23

8

SED analysis: 17 Mar 2015

Largest geomagnetic storm in Solar Cycle 24

9

SED analysis: 23 Apr 2023

Largest geomagnetic storm in Solar Cycle 25 to date

SED features comparison between GNSS TEC and TIDAS reconstructed NmF2

OBSERVATORY

Statistical analysis of SED features: Peak Intensity

MIT

Statistical analysis of SED features: Peak Half-Width

Summary

- Examined 56 geospace storms collectively to identify how many in which SED plume appear
- Systematically calculated SED plume intensity, half-width, and central longitude
- Examined features of statistic results, both features in common between days, and features unique to specific events, such as the superstorm in 2003
- While we still don't fully understand these, it is important to know these characteristics

Future Work

- Incorporate more storms and SED as they happen in the future
- Use of TIDAS to analyze SED at different heights, bottomside, topside
- Use calculated characteristics for further analysis, such as modeling SED

• Presenting results at AGU 2023

Acknowledgments

Thank you to...

- Dr. Ercha Aa and Dr. Shun-Rong Zhang
- Everyone at MIT Haystack
- My fellow REU cohort
- NŠF

... for an amazing research experience!

Questions?

Quiet Day vs Storm Day

