The Foundations of Molecular Cloud Population Synthesis

Marissa Perry^{1,2}, Jens Kauffmann¹

¹MIT Haystack Observatory

²The University of Texas at Austin REU 2023

Distance: 120 pc

Marissa Perry | MIT Haystack Observatory | UT Austin | Haystack REU Symposium

~ IOpc

Distance: 8.5 Mpc

Motivation: can we meaningfully decompose this unresolved signal?

Astrochemistry

Watanabe et al. 2013

Molecular Cloud Evolution

Population Synthesis: Signal Decomposition

=

Population Synthesis: Signal Decomposition

1) Numerical Optimization

- SciPy Optimize Minimize
- 2) Probabilistic Programming (MCMC)
 - PyMC3

F

Signal Decomposition: Line Luminosity

Signal Decomposition: Galaxy Region

Numerical Optimization

Probabilistic Programming

weight 4

weight 3

weight 2

0

weight 1

.5

Summary

- Population synthesis of molecular clouds might help us overcome the resolution gap
- In decomposing an unresolved galaxy signal, one must be observing more emission lines (n) than molecular clouds (m)
- Probabilistic programming methods, such as MCMC, are more desirable

Questions ?

Acknowledgements: thank you to Dianne, Nancy, Vincent and Phil for organizing this year's REU program. Thanks to Jens for the mentorship and to his student Derek Sheen for the work which the numerical optimization experiment was built upon.

Extra Slides

Optimization Problems

Constraining cloud weights values to be non-negative

Testing Various MCMC Models

Ę

Ensuring MCMC calculations accounted for measurement errors in both cloud and galaxy luminosity

 $\vec{L}_{\text{gal,obs}} =$

1.0

0.8

0.6

0.4

0.2

0.0

0.00

0.25

true weight

predicted weight

 $w_{\rm obs}$