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Presenter Notes
Presentation Notes
This summer at Haystack, I worked with Jens on some theoretical experiments to attempt to better understand the foundations of molecular cloud population synthesis.
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Over the summer, you may have seen this JWST image circulating the web in celebration of 1 year of science with the space telescope. Here the Rho Ophiuchi cloud complex is imaged in infrared wavelengths. It’s the closest star-forming region to us at 120 pc away. (**click**) and for scale, molecular clouds are generally a couple 10’s of pc in diameter. Since it’s nearby, spatially resolving details within this cloud can be done with radio telescopes. 


[Motivation: can we meaningfully decompose this unresolved signal? }
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However, as we move to extragalactic scales (at an order of a Mpc away), our current radio telescopes are unable to spatially resolve individual clouds. In this case, the signal received is an average over a kpc-diameter beam containing several molecular clouds. This leads us to an interesting question. (**click**) If we point the telescope beam on a region of clouds in a nearby galaxy, can we meaningfully decompose the unresolved signal?


Astrochemistry

Watanabe et al. 2013
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Before diving into this signal decomposition problem, I will discuss some background information to better understand molecular cloud environments. Rho Ophiuchi is a great example of the various environments within a molecular cloud. For instance (**use laser pointer**), in the upper half of the image is a bipolar outflow being produced by star formation. The outflow sets off a chain of chemical events with surrounding gas, such as the ionization of molecular hydrogen which is shown here in red. And, in the lower half of the image, a newborn star heats up this inner region of gas. All these physical processes have chemical signatures, which can be probed with spectra at radio wavelengths.

(**click**) As an example of such spectra, radio telescope observations taken from Watanabe (wa-ta-na-bae) et al. highlight some molecules and their theorized physical drivers. In this figure, the y-axis is the intensity of the detected molecule, and the x-axis is radio frequency. (**laser pointer**) For instance, Methanol is often associated with shocks produced by stellar outflows, so it’s likely a molecule to be found within this (**laser pointer**) region of Rho Ophiuchi 


Astrochemistry
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Emission lines probe molecular cloud properties
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Chemical reactions produced through these physical processes lead molecules to reach excited states. These excited states emit radiation in the form of emission lines. (**click**) The temperature measured by a radio telescope beam characterizes the brightness of a particular emission line. (**use laser pointer**) Here this is represented by TMB (MB standing for “Main Beam”). (**click**) Tex is a parameter that is dependent upon molecular density and (**click**) tau is the optical depth parameter that is dependent on molecular abundance.

(**click**) Since a single cloud contains such diverse physical environments, observing a cloud in several emission lines is useful to probe cloud properties.


Molecular Cloud Evolution
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Chevance et al. 2020
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Using this information, we can attempt to piece together a life cycle for molecular clouds. (**click**) Three main stages have been theorized where first the cloud envelope forms and is mostly inactive, second efficient SF begins and a photo disassociation region forms (these are regions where high temperatures from newly formed stars are in the process of dissolving nearby gas), and lastly the gas gets dispersed even more, leaving behind isolated stars. (**click**) This figure from Chevance et al. quantifies the relative time a cloud spends in each phase. (**point to red area of bar graph**) As you can tell, the Rho Ophiuchi molecular cloud is imaged during its short-lived SF phase. If we were to view this molecular cloud a few 100 years in the past, there would be no drivers for stellar outflows. And a few 100 years in the future, the hot gas would disperse, and these newborn stars would be isolated.


Population Synthesis: Signal Decomposition
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From this idea of cloud evolution, we could say that each stage has a unique combination of emission lines. This graphic shows each stage represented as a cloud population alongside a weight coefficient (**click**). Summing up these terms, we can compose an observed region of a galaxy.


Population Synthesis: Signal Decomposition

1) Numerical Optimization
e SciPy Optimize Minimize
2) Probabilistic Programming (MCMC)

e PyMC(C3
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This summer, I theoretically explored two experiments for how one could decompose a galaxy luminosity signal into its cloud population components, which I will get into in the next few slides.


Signal Decomposition: Line Luminosity
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Zooming in to an example of a local cloud, we can observe it in several molecular emission lines. Each emission line observation has an integrated luminosity value characterized by the main beam equation. (**click**) Let’s say we are observing a cloud in n number of emission lines. So, we can represent a cloud’s overall luminosity as an n-dimensional luminosity vector (**laser pointer**).


Sighal Decomposition: Galaxy Region

m # of cloud populations
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Zooming out, our galaxy beam signal is a superposition of cloud populations, and we are observing multiple emission lines within this signal. (**click**) Let’s say we have m number of cloud populations. So, a galaxy region can be represented as an (m x n)-dimensional luminosity matrix, where each element in this matrix is a given cloud observed in a given emission line.


Numerical Optimization

The system is solvable when there are more emission lines (n)

than molecular clouds (m).
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First I approached this signal decomposition problem with numerical optimization. A synthetic galaxy luminosity value is generated from synthetic cloud luminosities and corresponding weights. (**click**). Then, we define a similar equation where the weight that each cloud population has on the signal is the unknown parameter. (**click**) A minimization routine can be created by combining these two equations, where the weights are what we are solving for.

This plot shows the performance of this method, where each pixel represents the error in the optimizer’s predicted weights for a given m and n value. (**click**) For a realistic system of 5 molecular clouds and 15 emission lines, this method produced a median error of 38%.  Furthermore, there is significantly higher error in the upper triangle region. (**click**) This leads us to the conclusion that the molecular cloud weights can be approximated when there are more emission lines (n) than molecular clouds (m). This finding makes sense, since our problem was a high-dimensional system of linear equations. A system is unsolvable when there are fewer constraints than unknowns�


Probabilistic Programming
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Next, I approached this problem as a Bayesian linear regression problem, relying on the Markov Chain Monte Carlo (MCMC) technique. This model is ideal since it is capable of dealing with high-dimensional parameter spaces and is able to account for known measurement errors in our observations when approximating the weights. These measurement errors were added in the following way to our synthetic observations.

This model was initialized with the same realistic system 5 molecular clouds and 15 emission lines, resulting in a lower median error of 6%.  (**click through**)

When accounting for uncertainties outputted by MCMC, each predicted weight falls within the range of the true values.

Extra notes on plots: Corner plot: histograms on the diagonal show the marginalized posterior distribution for each weight. The contour plots are useful to spot correlations among parameters. True weight values are indicated by black crosshairs. Performance plot: demonstrates the 1:1 ratio between the true and predicted weights.



Summary

* Population synthesis of molecular clouds might help us overcome the

resolution gap

* In decomposing an unresolved galaxy signal, one must be observing more

emission lines (n) than molecular clouds (m)

* Probabilistic programming methods, such as MCMC, are more desirable
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Investigation into the population synthesis of molecular clouds points us in a direction of overcoming the resolution gap between local and extragalactic environments. Decomposing an unresolved galaxy signal is possible if one is observing more emission lines than molecular clouds. Probabilistic programming methods, such as MCMC, are more desirable since they have the ability to account for measurement errors.


Questions ?
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Extra Slides

Marissa Perry | MIT Haystack Observatory | UT Austin | Haystack REU Symposium



Optimization Problems

Constraining cloud weights values to be non-negative
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Presentation Notes
When running the minimizer with no constraints, this slope of high error showed up between our upper and lower triangle regions. When inspecting the output, negative weights were being predicted by the minimization routine. This is an issue since one of our assumptions was that the weight coefficients were positive since a model galaxy with negative weights seems unphysical.

To fix this, we used a constrained solver and added a bounds parameter within the SciPy minimization function.


Testing Various MCMC Models

Ensuring MCMC calculations accounted for
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Originally, I had tested my model with one likelihood function, which meant I could only account for measurement errors in the galaxy luminosity. This gave unrealistic results, as can be seen in the left plot.

When accounting for measurement errors in both the cloud and galaxy luminosity, I was able to more accurately model the signal decomposition.
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