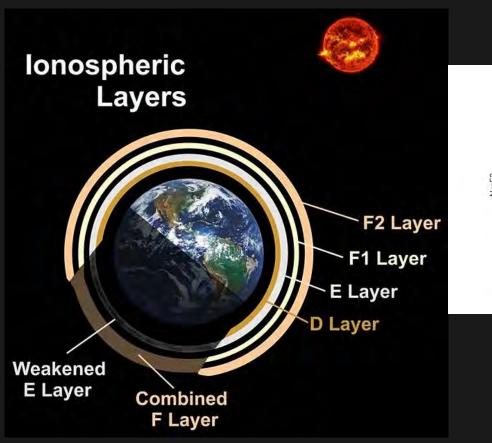
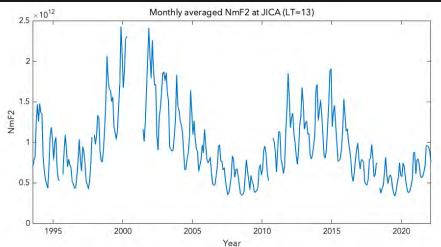
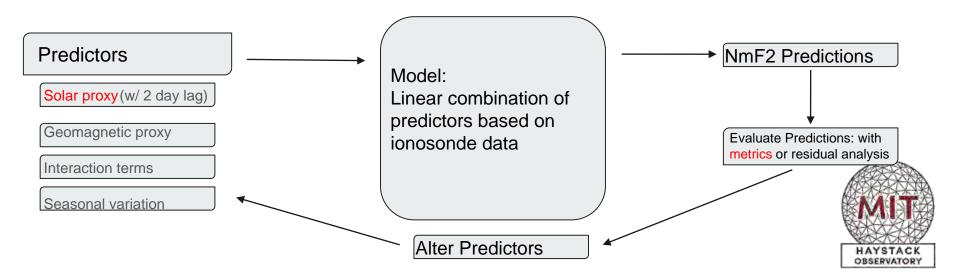
An Empirical Model of NmF2 Based on Ionosonde Observations

Fermin Redondo Mentors: Larisa Goncharenko, Dupinder SIngh




Overview

- 1. Background
- 2. Empirical Model and Input Data
- 3. Creation of Metrics
- 4. Metrics and Results
- 5. Using Metrics to Investigate Solar Bands
- 6. Residuals
- 7. Future work



Model Basics

- Local Empirical Model of Nm at F2 layer (NmF2)
- Uses
- data as observations

Ţ

Data for the Model

- Ionosondes are radars that probe the ionosphere by sweeping a signal across HF frequencies
- Plasma has a critical frequency where it will reflect EM waves
- Frequency gives us number density

 $f_{
m c}=8.979\sqrt{N_{
m max}}pprox9\sqrt{N_{
m max}}$

 Model was constructed using global ionosonde data from GIRO and WDC NICT

Creation of Metrics

=

- We needed a way to evaluate the model performance
- Metrics are quantitative data -model comparisons
- Allow for greater physical insights than just qualitative observations and comparisons

Accuracy

Metrics: RMSE, MAPE How to Read: The lower the better Tells us: how close predictions are to observations

Precision

Metrics: PR, modeling yield How to Read: if <1, model underpredicts Tells us: how close the ranges of values are

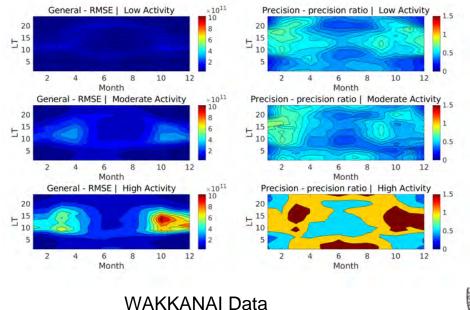
Bias

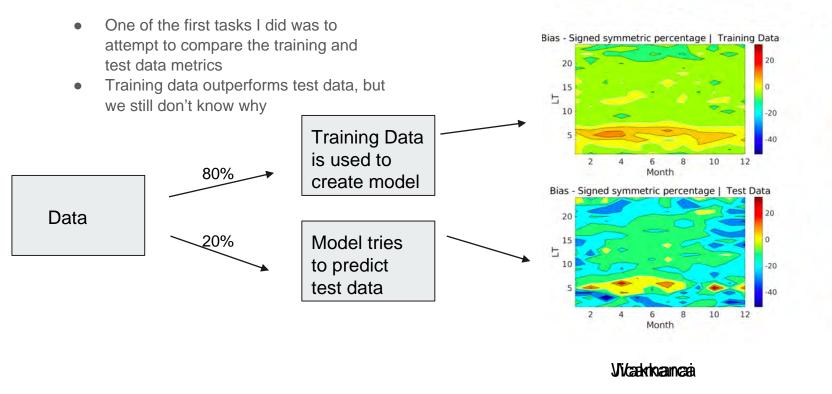
Metrics: SSPB, MPE, Mean error How to Read: 0 is ideal, if <0, model underpredicts Tells us: if model systematically under/over predicts

Association

Metrics: R, R² How to Read: The closer to 1, the better Tells us: if predictions follow trends of observations

Skill Score

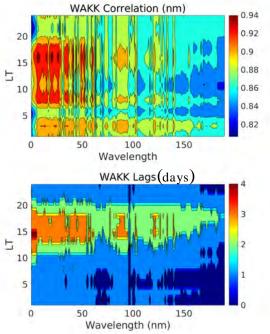

Metrics: PE, SSMSE How to Read: >0, better, <0, doing very poorly, =0, nearly identical Tells us: how two models compare in a given metric


Observations from Metrics

- Metrics were divided into high, low and medium solar activity (50, 75 percentile)
- Calculated metrics in quiet time ionosphere, no geomagnetic storms (KP>3)
- Metrics are calculated for every hour of a month, eg. all the values at 1pm in January, for every year
- Does it hold for different locations?

Metric Comparison of Training and Test Data

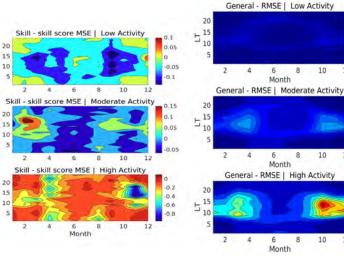
HAYSTACI

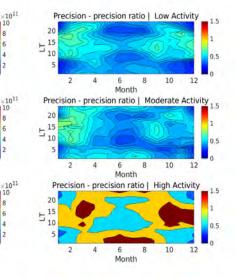

OBSERVATOR

Model Performance of Different FISM BANDS

- FISM2 is main solar EUV model used, made of different wavelengths. Currently using (0105.05 nm)
- Previous research shows that our models driven with FISM2 outperform our models driven with f10.7

=


- Compare the time series of observations vs each wavelength of FISM2 using cross correlation analysis, which shows how two time series correlate (have) and what the lag between these correlations is.
- The goal was to see which wavelengths had the most in common with the observations
- Helped me decide which wavelength bands and lags to try in model formulation
- Most common band across locations: 060 nm, lag of 13 days



Conclusions about Wavelength Bands

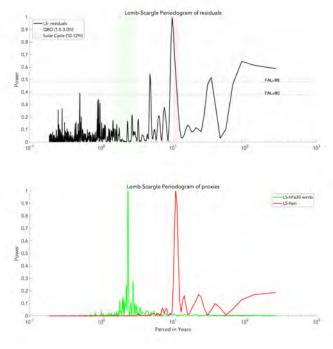
- Research often comes with result that isn't exciting
- The metrics painted a picture the wavelength bands do not have that great of an effect or 510 final predictions
- Skill Score values were very small and mostly negative, indicating same or worse performance
- 0-105.05 remains the wavelength band used in model
- Wuhan, Austin, Eglim, Wakkanai, Yamagawa, Jicamarca

 $\times 10^{1}$

×10¹¹

12

12


12

F

Residual Analysis

- Residuals- difference between prediction and observation
- Periodicities in residuals reveal what is still missing from model, or couldn't be accounted for.
- Lomb Scargle-Helps to find periodicities in residuals for unevenly spaced data
- 11 year periodicity remaining

Ţ

Summary

- Empirical model is striving to predict NmF2 in nonstormy ionosphere
- I spent my summer developing and testing various metrics to compare model versions
- I used the metrics to evaluate the model, specifically its solar proxies
- I looked for better bands of FISM2 but did not find any
- Widespread adoption of different metrics used for evaluation is a goal for scientific community
- We can use residuals to find any remaining periodicities in the model

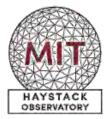
F

Future Work

- Continue residual analysis to find signals
- Continue using metrics to compare model performance
- Investigate FISM2 wavelengths at different time periods
 - Evaluation of FISM2 bands was done for all time periods
 - Evaluation at shorter time periods might reveal better results

Final Thoughts and Acknowledgements

- REU was fantastic learning experience
- I learned so much about research and having a career in science
- Thank you to Larisa for having me here and providing guidance and mentorship
- Thank you to my fellow REU students for making this a great summer
- MIT Haystack Staff (Dianne, Nancy, Heidi, Drew, John Tsai, Don, Roxana)
- Special thank you to Dupinder Singh for so much help, advice, and patience
- NSF, for funding



Questions?

References

- Goncharenko, L. P., Tamburri, C. A., Tobiska, W. K., Schonfeld, S. J., Chamberlin, P. C., Woods, T. N., et al. (2021). A new model for ionospheric total electron content: The impact of solar flux proxies and indices. Journal of Geophysical Research: Space Physics,126, e2020JA028466. <u>https://doi.org/10.1029/2020JA028466</u>
- Michael W. Liemohn, Alexander D. Shane, Abigail R. Azari, Alicia K. Petersen, Brian M. Swiger, Agnit Mukhopadhyay, RMSE is not enough: Guidelines to robust datanodel comparisons for magnetospheric physics, Journal of Atmospheric and SolarTerrestrial Physics, Volume 218, 2021, 05624, ISSN 13646826, <u>https://doi.org/10.1016/j.jastp.2021.105624</u>.
- [1] Jacob T. VanderPlas. Understanding the lomescargle periodogram. The Astrophysical Journal Supplement Series, 236(1):16, may 2018.

