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A (kind of) long time ago in a galaxy  
(not so) far away…

There was a massive star

M ~ 17 M☉

Ṁ ~ 5 x 10-6 M☉ yr-1

Red supergiant

No wait, it was that other massive star…



There was a massive star

M ~ 17 M☉

Ṁ ~ 5 x 10-6 M☉ yr-1

Red supergiant

VY CMa
Red supergiant

M ~ 17 M☉  

~ 1MBetelgeuse 

Ṁ ~ 6 x 10-4 M☉ yr-1

~100 ṀBetelgeuse

Zoomed out 
~4000x

Humphreys & Jones 2021

Blowing the wind of ~100 million ~10 billion suns



A (kind of) long time ago in a galaxy  
(not so) far away…

There was a massive star

M ~ 17 M☉

Ṁ ~ 5 x 10-6 M☉ yr-1

Red supergiant

There was a massive star

Or actually, there were two massive stars…

Lau+2022

…whose winds collided as they orbited

WR 140
Zoomed in ~5x

Anguita-Aguero+2022

M ~ 8.4 M☉ (Wolf Rayet) + 20.5 M☉ (O5 giant) 
Ṁ ~ 3 ṀBetelgeuse + 0.1ṀBetelgeuse



A (kind of) long time ago in a galaxy  
(not so) far away…

There was a massive star

M ~ 17 M☉

Ṁ ~ 5 x 10-6 M☉ yr-1

Red supergiant

A (kind of) long time ago in a galaxy  
(not so) far away…

There was a massive star
Humphreys & Jones 2021

Or maybe it was an eruption not a wind…

Smith+2018

…that ejected several times the mass of the sun  
in just a few years      (~104-5 ṀBetelgeuse)

Zoomed out ~25x
η Car



A (kind of) long time ago in a galaxy  
(not so) far away…

There was a massive star

M ~ 17 M☉

Ṁ ~ 5 x 10-6 M☉ yr-1

Red supergiant

There was a massive star

Or… it could have been two 
[not so] massive [not quite] stars

Zoomed in ~109 x

That really didn’t have much of a wind at all



A (kind of) long time ago in a galaxy  
(not so) far away…

Or, perhaps even  
one massive star + one compact object

Schroder+2020, Dong+2021, see also Mohamed+07 

Creating a spiral from Roche lobe overflow at a rate up to ~104 ṀBetelgeuse



A (kind of) long time ago in a galaxy  
(not so) far away…

These incredibly diverse systems are all 
thought to be stellar explosion progenitors

How can we connect explosions to progenitors?



A (kind of) long time ago in a galaxy  
(not so) far away…

How do these explosions influence their environment  
& future generations of stars?  

Heywood+22



A (kind of) long time ago in a galaxy  
(not so) far away…

How do these explosions influence their environment  
& future generations of stars?  

Zucker+22



Most of what we historically know 
about supernovae  

is based on optical observations



In the optical, we’ve detected ~104 supernovae

[aside from systematic sample bias] 

So we’re sensitive to explosions as rare as ~1 in 10,000 

ZTF

ASASSN

Panstarrs ATLAS



“Regular” optical supernovae peak at ~weeks to months; 
their peak luminosities span ~2-3 orders of magnitude

Smith+2007

~250x

~3 weeks ~13 weeks



Kasliwal+11, Cai+22
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Kasliwal+11, Cai+22

< 1015 cm 
~ 580 AU 

~ 3x10-4 pc

< 1016 cm < 1017 cm

Optical supernovae probe

• The ejecta

• The inner CSM

< 3 years of mass loss

For v = 10000 km/s

For vwind = 100 km/s 
< 30 years < 300 years



Radio observations are  
ramping up quickly



In the radio we’ve detected O(102) supernovae

Follow up observations

91 detections

234 observations

Bietenholz+20



Follow-up radio supernovae peak at ~days to years; 
their peak luminosities span >5 orders of magnitude

< 1 day ~3 years

~200,000x

Bietenholz+20



The late peaks probe mass loss up 
to ~an order of magnitude earlier 

< 1 day ~3 years

~200,000x

Bietenholz+20

< 1018 cm

~centuries to millenia

(shock deceleration)



A growing number of radio supernovae detected  
in all-sky surveys

Follow up observations

91 detections

234 observations

Bietenholz+20

Serendipitous 
detections in surveys

Stroh+21

19 detections in VLASS

More in other 
surveys?



Long GRBs

Region in Bietenholz+20

SN 1965G!

Stroh+21



In the radio we’ve detected O(102) supernovae

Follow up observations

91 detections

234 observations

Bietenholz+20

Serendipitous 
detections in surveys

Stroh+21

+19 detections in VLASS

Direct detection 
in surveys

~a few dozen  
to 100 in VLASS

Dong et al. in prep

More in other 
surveys?

More in other 
surveys?



VLASS supernovae with optical 
counteparts are preferentially 

found up hereLong GRBs

< 1018 cm

~centuries to millenia



Radio supernovae probe 
1-2 orders of magnitude later 

timescales than optical supernovae

This extends our probe of pre-
supernova mass loss to earlier times



Radio supernovae probe 
1-2 orders of magnitude later 

timescales than optical supernovae

This extends our probe of pre-
supernova mass loss by a similar factor

But what about the other axis?
What determines a supernova’s radio 

luminosity?

This might be best illustrated with 
supernova *remnants*
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Rothenflug+04

Type Ia SN 1006 (d = 1.9 kpc)
Integrated flux 19 Jy

Dong, Frail et al. in prep

Type Iax SN 1181 (d = 2.3 kpc)
Integrated flux < 0.6mJy

< 14uJy / beamEquivalent to 1.7mJy/beam
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SN 1181

SN 1181 is the least luminous Galactic 

SNR in the last 1000 years by  
>4 orders of magnitude

Why?



What determines a SNR’s radio 
luminosity?
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DIFFUSIVE SHOCK 
ACCELERATION

MAGNETIC FIELD 
AMPLIFICATION

Radio emission from supernovae is mostly 
synchrotron emission from the forward shock
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The radio luminosity is directly determined by  
(1) emitting region volume, (2) electron density, (3) 

magnetic field strength 

In the optically thin limit for a simplified geometry

See Sarbadhicary+17 for a more general equation that includes synchrotron self-absorption
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The supernova remnant’s size/velocity is 
determined by the energy, ejecta mass (profile), 

and CSM density

Ingredient #1:  
 

the volume of the emitting region
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The particles are accelerated in a power 
law energy distribution

p is related to the  
radio spectral index ɑ by


ɑ = (p-1)/2

Number density per 
energy of relativistic 

electrons

[erg/cm^3]

Ingredient #2:  
 

the number density (and spectral index) of 
relativistic electrons
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The relativistic particles create streaming instabilities ahead of the shock.  
 

This accelerates the magnetic field to a saturation level  that depends on the shock’s  
energy, velocity, particle acceleration efficiency & (sometimes) initial magnetic field

Duffell +18 The amplification is uncertain, but a  
reasonable analytic description is:

Sarbadhicary+17

Fraction of shock energy in B field Particle acceleration efficiency

Shock velocity
Alfven Mach  
number

Ingredient #3:  
 

the strength of the magnetic field
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Fiducial model for 
SN 1181 


• n= 0.1 cm-3

• E = 1e48 erg

• M = 0.1 solar 

masses 
 
Parameters based on X-
ray analysis (Ko+23,24)


 
 

Can use the above 
to create lightcurves 

for SNRs

Fiducial model for  
regular Type Ias

• n= 0.1 cm-3

• E = 1e51 erg

• M = 1.4 solar masses

The difference between Ia’s 
and SN 1181 is mostly in energy 

(1000x) & ejecta mass (14x).
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Lowering ejecta mass increases the  
radio luminosity

So that’s not the reason…
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Decreasing the energy *sharply* decreases 
the luminosity

SN 1181 is likely underluminous 
because Iax’s just have low energy
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Decreasing density also significantly  
lowers luminosity



A supernova / SNR’s unabsorbed  
luminosity is set by

Ejecta energyVolume

B field

Relativistic 
electron density 
+ spectral index

Mass loss (SNe) 
ISM density (remants)

Ejecta mass

When you include absorption, there is also

Emitting region geometry



📡

Example: free-free absorption

Very dense spherical CSM

📡😢

absorbs all internal emission

Dong+21



High density,  
slow shock, 

strong radio emitter

Low density,  
already hot from 
being shocked

But you can get around this with the  
power of geometry!

📡😄

Dong+21
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Dong+21
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High density,  
slow shock, 

strong radio emitter

Low density,  
already hot from 
being shocked

Where have we seen this before?

📡😄

Dong+21

And maybe even



Let’s go back to the parameter space now

Where do different types of stellar explosions live?

How can we find them with present+future observations?
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Relativistic jets
Dense, probably 
aspherical CSM

The diversity of 
winds

“Normal” 1051 erg 
remnants

Low-energy & very low 
density remnants
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Present day surveys 
+ VLASS

+ VAST/RACS

+ LoTSS

+ VLITE

+ ThunderKAT?

Next-gen facilities +  
Multi-wavelength searches 

Next-generation pointed 
observations 

-ngVLA

SKA

Next-generation surveys 
- DSA 2000


