
Pushing the Mark6 to 60Gbps and Beyond with DPDK

J. Barrett

MIT Haystack Observatory
IVTW Meeting IX

October 23, 2024

1 / 14



Outline

1 Mark6 background

2 Updated dplane architecture and DPDK (Data Plane Development Kit)

3 Testing and results

4 Future work/outlook

2 / 14



Mark6 Background

1 Development initiated in the late ’00s

2 Designed to support VLBI recording to readily swapped disk-modules

3 Nominally supports continuous recording at 4Gbps per disk-module (up to 16Gbps)

4 Hardware is supplied commercially by the Conduant Corp.

5 Software is split into two components:
1 cplane - the control plane handles user interaction via VSI-S command set, and system configuration
2 dplane - the data plane handles network-to-disk data movement

• Commodity computer hardware in
custom chassis, but without other
proprietary hardware

• Data network interface is via
10/25GbE

• Up to 4 disk modules of 8 HDDs
each

• Modules can be quickly swapped
via SAS cables

3 / 14



Mark6 - Hardware refresh

1 Every few years, we need a hardware refresh due to component EoL

2 Last refresh provided the opportunity to explore:
1 PCIe4.0
2 AMD EPYC CPUs (with 128 PCIe lanes)
3 ATTO HBA
4 Intel network cards

(a) Updated Mark6 interior with AMD EPYC,
Supermicro H12SSL motherboard (b) Mark6 + 2 R2DBEs in hypobaric chamber

1 Using the existing d-plane software (R. Cappallo), demonstrated we can do >16Gbps.

2 32Gbps operation in two modes was tested: (2x 16Gbps) and (4x 8Gbps)

3 This mode also tested at 4500m equivalent in hypobaric chamber

4 / 14



Mark6(+) Hardware selection

1 AMD 16-core CPU - (EPYC 7282, 128
lane PCIe 4.0)

2 PCIe 4.0 capable motherboard
(Supermicro H12SSL-CT with 64 GB
RAM - supports up to 2TB)

3 1x 100GbE NIC: Intel E810-CQDA2
(QSFP28)

4 2x 10/25GbE NIC: Intel XXV710-DA2
(SFP+)

5 2x HBA: Atto H12F0GT 16-Port
6/12Gb/s SAS (SFF-8644 to
SFF-8088)

6 4x Mark6 disk modules (8 drives each)
- Seagate Exos16 16TB HDD

7 Additional high speed cooling fans and
custom airflow ducts

Figure: Interior of Mark6+ with 100GbE NIC

5 / 14



But what about a software refresh?

Several motivating factors for a software refresh:

1 Need to move to a modern OS (Debian Squeeze and CentOS7 are both EoL)
1 Ubuntu 22.04 LTS selected - support to 2034 (FIPS option available)

2 Need to support new hardware and 100GbE:
1 ngEHT - future backend (2x 32Gbps VDIF threads on a single 100Gbe interface)
2 DBEv5 - support for a direct 100Gbe connection (no switch)

3 Need to demonstrate continuous 32Gbps operation of a Mark6 on a single 100Gbe interface.

4 Optionally – demonstrate RX of multiple VDIF threads on a single interface

5 Opportunity to explore newer technologies - particularly kernel bypass packet capture
1 PF RING is used by pre-existing software, but various other technologies are available
2 DPDK looks like the leading candidate for this task
3 As specialized hardware not needed, and its appropriate for unidirectional UDP capture

6 Need to upgrade cplane to python3

6 / 14



PF RING vs. DPDK

1 Existing Mark6 dplane software uses
PF RING as packet capture library

2 Zero-copy mode requires (per-MAC)
paid-license, so not utilized

3 Must manage and tune cpu-interrupts for
proper performance! – This can be quite a
chore when CPUs (frequently) go EoL

4 More limited set of supported devices

5 Device still managed/visible to kernel
network stack

6 Not required, but generally operated in
promiscuous mode

1 Moving to DPDK allows for:

2 Use of poll-mode drivers - removes the
need of cpu interrupts entirely.

3 Takes full control of the network device
away from the kernel

4 Buffered/burst packet capture with DMA
from device to host-memory

5 Zero-copy packet manipulation (no license
fee)

6 However: No kernel-based network
management is possible (e.g. no
ARP/ICMP support).

7 Ok, since we are treating it as a purely a
point-to-point link

8 Also not required, but we operate in
promiscuous mode

7 / 14



Updated dplane architecture

1 Old architecture revolved around packet ring-buffers (per device)

2 New packet processing relies on DPDK mbufs pool

3 mbufs are pre-allocated – must enable hugepages in kernel params

4 mbufs are filled on device burst-read, and free’d back to the pool on last use

5 Instead of ring buffer, data is processed in chunks by various thread pools, and passed from
task-to-task via locking stacks/queues

6 With appropriately sized work items, lock contention is a non-issue

7 For the most part, in order to simplify and preserve packet-ordering on reception, some
thread-pools have size 1 (single threaded):

1 The packet receiver – one per interface
2 The VDIF thread ID sorter – one per interface (needed when multiple VDIF threads present on a

single interface)
3 The scatter-gather block constructor (one per interface)

8 Exception: The thread pool for SG block writers has size Nfiles

8 / 14



Packet life cycle

1 Packets are received by NIC

2 Packets are burst read into mbufs (extracted from pool) by poll-mode driver call

3 Packet burst is passed to VDIF thread ID sorter, packets are sorted and passed to block
constructor

4 Each VDIF thread is assigned a scatter-gather block constructor, which collects packets until
it is full

5 Completed blocks are passed to waiting writers, which write to next available HDD

6 Empty blocks are recycled back to the collectors, and used packets to the mbuf pool

Figure: Packet mbuf cycle.

9 / 14



Testing/Simulation

1 Currently don’t have a readily available back-end to serve data at required rates

2 Need a dummy data generator (vdif headers + junk payload) on the cheap

3 DPDK packet burst functionality + nanosleep to gets us to an approximate aggregate data
rate

4 Can then feed the 100GbE NIC back to itself

5 After packet capture, we gather the scatter-gather files and check VDIF header validity with
the tool dqa.

10 / 14



Loop-back testing

Using VDIF packet simulator we tried the following configurations:

1 1x VDIF thread @ 32 Gbps - continuous, 0
dropped ✔

2 2x VDIF threads @ 64 Gbps (1 thread recorded)
- continuous, 0 dropped ✔

3 1x VDIF thread @ 59 Gbps - continuous,
(dropped <6e-05) ✔

4 1x VDIF thread @ 64 Gbps 75-80s before
memory buffer* exhausted - burst mode only

5 2x VDIF threads @ 64 Gbps 20-30s before
memory buffer* exhausted - burst mode only

Figure: Back of Mark6 - 100GbE fiber
in yellow

• This testing was done with single actuator drives with an individual write speed of 261MB/s

• Results suggest we are achieving about 85-90% of the theoretical aggregate write throughput

• Latest available HDDs have advertised max sustained write speeds up to 285MB/s which
might enable us to go a recording rate as high as 64Gbps continuous without resorting to
SSDs or multi-actuator drives

• *memory buffer size was 36GB

11 / 14



Some ugly details and dead-ends

1 The kernel parameter isolcpus is necessary to keep the cores hosting the packet-receive
thread and VDIF sorter thread from handling other tasks

2 Write balancing is tricky - disk performance varies. Forcing equal writes across disks limits
the speed to the slowest performer.

3 Alternative: (first-come-first-served) results in ∼ 1% size variance

4 DPDK mbuf buffer pool size must be 2M ×MTU (which limits RAM buffer configurability)

5 When the RAM buffer is full, data must be dropped.

6 Time-slip between packet simulator and system makes long schedules (24hrs) difficult to test.

7 Some failed experiments:

1 Async io uring seemed like a good idea, but was found to be slower than standard fwrite
2 Likewise, using unbuffered system call to ’write’ (not fwrite), requires data to be packaged in 4K

blocks
3 However that doesn’t work with the VDIF packet size (8192+32), and since mbufs are not

guaranteed to be contiguous, a copy is needed ✗

12 / 14



Future work/experiments

Near term goals:

1 Populate the simulated packets with payload data

2 Perform integration and verification testing with ngEHT DBE

3 The new dplane needs to be integrated with the cplane software (some minor API changes
expected)

Future work:

1 Examine performance higher speed single-actuator drives and dual actuator HDDs (Seagate
MACH.2)

2 A large RAM buffer could possibly obviate the need for continuous recording capability for
most practical applications, but would be an interesting space to explore

3 Test 100GbE system performance at high altitude conditions

13 / 14



Acknowledgements

This work was done with the hardware and support of NASA-SGP, the ngEHT, and the EHT:

14 / 14


