Cross-Polarization Gain Calibration of VGOS Antennas

Frédéric Jaron

TU Wien, MPIfR

9th International VLBI Technology Workshop

MIT Haystack Observatory Westford, MA, USA

October 23, 2024

TECHNISCHE UNIVERSITÄT WIEN Vienna |Austria F. Jaron^{1,2}, I. Martí-Vidal^{3,4}, M. Schartner⁵, J. González-García⁶, E. Albentosa-Ruiz³,
S. Bernhart^{2,7,8}, J. Böhm¹, S. Modiri⁹, A. Nothnagel¹, V. Pérez-Díez^{10,11} T. Savolainen^{2,12,13},
B. Soja⁵, E. Varenius¹⁴, M. H. Xu^{11,15}, C. C. Cheung¹⁶

¹Technische Universität Wien, Wiedner Hauptstraße 8-10, 1040 Wien, Austria, Frederic, Jaron@tuwien, ac.at ²Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany ³Dpt. Astronomia i Astrofísica, Universitat de València, C/ Dr. Moliner 50, 46120 Burjassot, Spain ⁴Observatori Astronòmic, Universitat de València, C/ Cat. José Beltrán 2, 46980 Paterna, Spain ⁵Institute of Geodesy and Photogrammetry, ETH Zürich, Zürich, Switzerland ⁶Centro Astronómico de Yebes (IGN), Yebes, Spain ⁷Reichert GmbH. Bonn. Germany ⁸BKG, Geodetic Observatory Wettzel, Bad Kötzting, Germany ⁹Department Geodesy, Federal Agency for Cartography and Geodesy (BKG), Frankfurt am Main, Germany ¹⁰Observatorio Astronómico Nacional (OAN-IGN), Alfonso XII 3, 28014 Madrid, Spain ¹¹Centro de Desarrollos Tecnológicos, Observatorio de Yebes (IGN), 19141 Yebes, Guadalajara, Spain ¹²Aalto University Metsähovi Radio Observatory, Kylmälä, Finland ¹³Aalto University Department of Electronics and Nanoengineering, Aalto, Finland ¹⁴Chalmers University of Technology, Gothenburg, Sweden ¹⁵GFZ German Research Centre for Geosciences, Potsdam, Germany ¹⁶Space Science Division, Naval Research Laboratory, Washington, DC 20375, USA

2 Results from er2201 (Jaron et al. 2024)

Operation of the second state of the second

F. Jaron (TU Wien, MPIfR)

VGOS Cross-Gains

Building Stokes I for VGOS

Two main approaches:

• Stokes / (Barrett et al. 2019): "Pseudo-Stokes I"

$$I_{ab}^{\prime}=(X_{a}X_{b}+\mathrm{e}^{\mathrm{i}(arphi_{a}-arphi_{b})}Y_{a}Y_{b})\cos\Delta+(X_{a}Y_{b}\mathrm{e}^{-\mathrm{i}arphi_{b}}-Y_{a}X_{b}\mathrm{e}^{\mathrm{i}arphi_{a}})\sin\Delta$$

 Δ : Parallactic angle difference between antennas a and b $\varphi_{\rm a,b}$: Phase of Y w.r.t. X at antenna a, b

Building Stokes I for VGOS

Two main approaches:

• Stokes / (Barrett et al. 2019): "Pseudo-Stokes I"

$$I_{\mathsf{a}\mathsf{b}}' = (X_\mathsf{a}X_\mathsf{b} + \mathsf{e}^{\mathsf{i}(\varphi_{\mathsf{a}} - \varphi_{\mathsf{b}})}Y_\mathsf{a}Y_\mathsf{b})\cos\Delta + (X_\mathsf{a}Y_\mathsf{b}\mathsf{e}^{-\mathsf{i}\varphi_{\mathsf{b}}} - Y_\mathsf{a}X_\mathsf{b}\mathsf{e}^{\mathsf{i}\varphi_{\mathsf{a}}})\sin\Delta$$

 $\Delta~:$ Parallactic angle difference between antennas a and b $\varphi_{\rm a,b}\colon$ Phase of Y w.r.t. X at antenna a, b

• PolConvert Martí-Vidal et al. 2016

$$\begin{bmatrix} I+V & Q+iU \\ Q-iU & I-V \end{bmatrix}_{ab} = C_{\odot +} \begin{bmatrix} 1 & 0 \\ 0 & \rho_a \end{bmatrix} \begin{bmatrix} XX & XY \\ YX & YY \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \rho_b^* \end{bmatrix} C_{+\odot}$$

where $\rho_{a,b}$ is the cross-polarization gain (amplitude and phase) between X and Y at antenna a, b. It is derived by least-squares fitting.

Background:

• Stokes *I* fringe-fitting of VGOS data requires calibration of the complex gain differences between the two linear feeds of each antenna.

Background:

- Stokes *I* fringe-fitting of VGOS data requires calibration of the complex gain differences between the two linear feeds of each antenna.
- 4C 39.25 has proven to be an excellent cross-bandpass calibrator.

F. Jaron (TU Wien, wir my

Background:

- Stokes *I* fringe-fitting of VGOS data requires calibration of the complex gain differences between the two linear feeds of each antenna.
- 4C 39.25 has proven to be an excellent cross-bandpass calibrator.

 \Rightarrow Idea: Observe 4C 39.25 for 6 hours with a network of VGOS antennas.

Background:

- Stokes *I* fringe-fitting of VGOS data requires calibration of the complex gain differences between the two linear feeds of each antenna.
- 4C 39.25 has proven to be an excellent cross-bandpass calibrator.

 \Rightarrow Idea: Observe 4C 39.25 for 6 hours with a network of VGOS antennas.

Background:

- Stokes *I* fringe-fitting of VGOS data requires calibration of the complex gain differences between the two linear feeds of each antenna.
- 4C 39.25 has proven to be an excellent cross-bandpass calibrator.

 \Rightarrow Idea: Observe 4C 39.25 for 6 hours with a network of VGOS antennas.

Aims:

• Estimate cross-polarization bandpasses of the participating antennas.

Background:

- Stokes *I* fringe-fitting of VGOS data requires calibration of the complex gain differences between the two linear feeds of each antenna.
- 4C 39.25 has proven to be an excellent cross-bandpass calibrator.

 \Rightarrow Idea: Observe 4C 39.25 for 6 hours with a network of VGOS antennas.

- Estimate cross-polarization bandpasses of the participating antennas.
- Investigate their variability/stability as a function of frequency and time.

Background:

- Stokes *I* fringe-fitting of VGOS data requires calibration of the complex gain differences between the two linear feeds of each antenna.
- 4C 39.25 has proven to be an excellent cross-bandpass calibrator.

 \Rightarrow Idea: Observe 4C 39.25 for 6 hours with a network of VGOS antennas.

- Estimate cross-polarization bandpasses of the participating antennas.
- Investigate their variability/stability as a function of frequency and time.
- Oetermine optimal duration and observing geometry for calibration scans.

Background:

- Stokes *I* fringe-fitting of VGOS data requires calibration of the complex gain differences between the two linear feeds of each antenna.
- 4C 39.25 has proven to be an excellent cross-bandpass calibrator.

 \Rightarrow Idea: Observe 4C 39.25 for 6 hours with a network of VGOS antennas.

- **()** Estimate cross-polarization bandpasses of the participating antennas.
- Investigate their variability/stability as a function of frequency and time.
- Oetermine optimal duration and observing geometry for calibration scans.
- Model the intrinsic source polarization.

Background:

- Stokes *I* fringe-fitting of VGOS data requires calibration of the complex gain differences between the two linear feeds of each antenna.
- 4C 39.25 has proven to be an excellent cross-bandpass calibrator.

 \Rightarrow Idea: Observe 4C 39.25 for 6 hours with a network of VGOS antennas.

- Estimate cross-polarization bandpasses of the participating antennas.
- Investigate their variability/stability as a function of frequency and time.
- Oetermine optimal duration and observing geometry for calibration scans.
- Model the intrinsic source polarization.
- In addition, check two other candidates: NRAO150 and OJ287.

Using PolConvert to estimate the cross-polarization gains

F. Jaron (TU Wien, MPIfR)

Phase [degrees]

Results from er2201 (Jaron et al. 2024)

Station MG - Band B

Station MG - Band A

Station OE - Band B

Phase [degrees]

Frequency [GHz]

Station OW - Band B

Station OW - Band D

Station WF - Band B

Station WS - Band B

F. Jaron (TU Wien, MPIfR)

VGOS Cross-Gain

Fig. 13 (bottom panel) of Jaron et al. (2024)

Histogram of Y-X delay offsets for station: H

Fig. 4 (top panel) of the Haystack VGOS Manual

Cross-bandpass solutions for Onsala West from observations of 4C 39.25 in other EU-VGOS sessions.

- Top: ev9189. 2019 July 08
- Middle: ev9203. 2019 July 22
- Bottom: ev9217 2019 August 05

To first order, cross-bandpasses can remain remarkably stable over several years.

Fig. 15 in Jaron et al. (2024)

Follow-up session VR2303

Objectives:

- Flux selected survey of radio sources.
- Measure cross-polarization bandpasses of more VGOS antennas.
- Investigate source structure of selected sources.
- Search for circular polarization in the radio emission from AGN.
- High SNR also allows to investigate atmospheric variability.

24-hours VGOS session VR2303

- 100 sources, AGN mainly selected by their radio fluxes.
- Observed from August 24 18:00 UTC until August 25 18:00 UTC, 2023.
- Scan length: 2 minutes.
- Network: Hb, K2, Nn, Oe, Ow, Sa, Wf, Ws, Yj, Is. Gs, Mg scheduled but not observed.
- Problem: Sa did not record VGOS Band A (due to RFI).
- \bullet Correlated in Vienna (128 and 160 channels, ${\sim}200$ GB). Raw data still there (283 TB).
- Did not use phase-cal signal in PolConvert.

Measuring the goodness of the solutions

- Cross-polarization bandpasses are given in terms of amplitude A and phase ϕ .
- How to quantify the noisiness?
- Solution: Express gains as complex numbers z = A cos φ + iA sin φ, and compute distance between adjacent points (z ∈ C, i² = −1).

$$r = \frac{1}{2LMN} \sum_{i=1}^{L} \sum_{j=1}^{M} \sum_{k=2}^{N} \sqrt{(\Re e_{z_{ijk}} - \Re e_{z_{ijk-1}})^2 + (\Im m_{z_{ijk}} - \Im m_{z_{ijk-1}})^2}$$
(1)

- *L* Number of stations (up to 10),
- M Number of sub-bands (32),
- *N* Number of channels (160).

Additional factor 2, so $r \in [0, 1]$. For the moment: A = 1 (neglect amplitudes).

Preliminary results from vr2303 Example Cross-Polarization Bandpasses now ranked

F. Jaron (TU Wien, MPIfR)

Preliminary results from vr2303 Example Cross-Polarization Bandpasses now ranked

F. Jaron (TU Wien, MPIfR)

Preliminary results from vr2303 Example Cross-Polarization Bandpasses now ranked

VGOS Cross-Polarization Gain Calibrator List (preliminary)

Source	Rank	Error	S^*_{RFC} [Jy]	Source	Rank	Error	S _{RFC} [Jy]
3C454.3	0.05	0.03	12.3	1044 + 719	0.11	0.02	1.3
3C279	0.06	0.05	13.4	1803 + 784	0.11	0.02	2.2
2201 + 315	0.07	0.01	2.1	0552+398	0.12	0.05	3.5
3C84	0.07	0.05	23.4	0607-157	0.13	0.06	4.0
OJ287	0.08	0.02	3.2	0059 + 581	0.13	0.02	2.4
4C39.25	0.08	0.05	9.2	1928 + 738	0.13	0.02	3.3
NRAO150	0.09	0.03	5.5	2155-152	0.14	0.05	3.2
1156 + 295	0.10	0.01	1.8	0212+735	0.15	0.02	2.9
VR422201	0.11	0.08	2.9	2013+370	0.18	0.01	2.6
3C273B	0.11	0.06	22.6				

*Average radio flux density derived from the Radio Fundamental Catalog (RFC2023b)

Conclusions

- Cross-polarization bandpass calibration is a key element in VGOS fringe-fitting.
- \bullet Analysis of er2201 has shown that there is systematic short-term variability on \sim hours time-scales.
- ullet On time-scales of \sim years cross-bandpasses can remain stable, to first order.

- Follow-up session vr2303 has been observed, analysis in progress.
- A preliminary list of cross-bandpass calibrator sources has been determined (for PolConvert).
- Caveat: Requirements for Haystack pipeline and PolConvert are different!