Chalmers University of Technology

Towards VLBI with ESA's Genesis satellite

Rüdiger Haas

for ESA GSET WG-3 (VLBI)

Genesis

- ESA mission, co-location satellite:
 - VLBI sender

CHALMERS

- GNSS receivers
- SLR reflectors
- DORIS receiver
- Orbit:
 - height h=6000 km
 - inclination i=95°
 - orbital period ≈T= 3.8 h
 - angular velocity η =0.026 °/s
 - horizon-2-horizon @ 5 deg: 68 min

2+ year mission, lauch planned 2028

Genesis ESA project team

- Gaia Fusco

CHALMERS

- System and Operations Manager
- Evelyn Honoré-Livermore Platform Principal Engineer
- Pierre Waller

– Payload Principal Engineer

– System Engineering Support

- Evelina Sakalauskaite
- Werner Enderle

– Head of Navigation Support Office

Vicente Navarro

- Senior System Engineer (GSSC)

Genesis Science Exploitation Team (GSET)

WG-3 Members

- Simone Bernhart BKG/MPIfR correlator Bonn, DEU
- Johannes Böhm TU Vienna, AUT

CHALMERS

- Patrick Charlot CNRS Bordeaux, FRA
- Pablo de Vicente IGN Yebes Observatory, ESP
- Claudia Flohrer BKG Frankfurt, DEU
- Susana Garcia-Espada, Kartverket, Ny-Ålesund Observatory, NOR
- Luciano Garramone ASI, Matera Observatory, ITA
- Jakob Gruber BEV Wien, AUT
- Rüdiger Haas, Chalmers, SWE
- Masafumi Ishigaki, GSI, JAP
- Shinobu Kurihara , GSI, JAP
- Lucia McCallum University of Tasmania, Hobart Observatory, AUS
- Alexander Neidhardt TU München, Wettzell Observatory, DEU
- Axel Nothnagel TU Vienna, AUT

- Almine Ozyildirim, RoB Brussels, BEL
- Chet Ruszczyk MIT Haystack Observatory, USA
- Matthias Schartner ETH Zürich, CHE
- Harald Schuh GFZ Potsdam, DEU
- Gino Tuccari INAF Italy & MPIfR Bonn, ITA/DEU

Ex-officio (ESA GSET coordinator)

- Özgür Karatekin, RoB, Brussels, BEL
- ESA
- Gaia Fusco, ESTEC, NLD
- Werner Enderle, ESOC, DEU
- Pierre Waller, ESTEC, NDL
- Evelina Sakalauskaite, ESTEC, NDL
- Sara Bruni, ESOC, DEU

The tasks of WG-3

- Advise and support ESA in design of the Genesis VLBI transmitter
- Investigate and prepare for compatibility with normal IVS operations and IVS product generation
- Scientific exploitation of Genesis VLBI data
- Goals:
 - include Genesis in IVS operations to strengthen TRF
 - BUT do not "harm", i.e. deteriorate any other IVS products (!)
 - find "good compromises" to achieve a "win-win-situation"
 - do not harm radio astronomy as such

Seven Work Packages in WG-3

- WP-1: frequencies, signals etc.
- WP-2: ground station fidelity, etc.
- WP-3: delay resolution and correlation, etc.
- WP-4: scheduling
- WP-5: end-to-end simulations
- WP-6: test observations
- WP-7: PRN-option

Chalmers University of Technology

Some Genesis geometry

$$\frac{\sin(90^\circ + \varepsilon)}{(r+h)} = \frac{\sin\gamma}{r} = \frac{\sin\delta}{s}$$
$$\sin\gamma = \frac{r}{(r+h)}\sin(90^\circ + \varepsilon)$$
$$\delta = 90^\circ - \varepsilon - \gamma$$

Distance *s* between Genesis and ground station:

$$s = \frac{\sin \delta}{\sin(90^\circ + \varepsilon)}(r+h)$$

Max baseline length *b* between two ground stations at "opposite sides" :

 $b_{max} = 2 \cdot r \cdot \sin \delta$

Area A of Genesis' "visibility cap":

$$A = 2 \cdot \pi \cdot r^2 (1 - \cos \delta)$$

Genesis visibility measures

Station elevation cutoff angle	Genesis antenna opening angle	Distance satellite- ground station	Max baseline length between ground stations at "opposite sides"	Percentage of earth surface illuminated
$oldsymbol{arepsilon}_{min}$	2γ	<i>s</i> (km)	<i>b_{max}</i> (km)	<i>p</i> (%)
5°	61.732°	10063.597	10325.956	20.705
10°	60.951°	9555.579	9692.621	17.544
15°	59.662°	9082.839	9036.457	14.749
20°	57.886°	8646.889	8369.094	12.297

One day of Genesis

Pink: Ground track during 1 day. Green: "Visibility cap", i.e. instantaneous visibility assuming a minimum elevation $\varepsilon_{min} = 5^{\circ}$ at the ground stations.

frequencies, signal strength, etc.

The Genesis VLBI frequencies

<mark>Band-1</mark> 3100–3300 MHz	Radiolocation, Earth exploration-satellite (active), Space research (active)	Radio Regulations
<mark>Band-2</mark> 5250–5570 MHz	Radiolocation, Earth exploration-satellite (active), Space research (active)	Articles Edition of 2020
<mark>Band-3</mark> 8200–8400 MHz	Earth exploration-satellite (space-to-Earth)	
<mark>Band-4</mark> 9300–9800 MHz	Earth exploration-satellite (active), Radiolocation, Radionavigation, Space Research (active)	

See: https://www.itu.int/en/publications/ITU-R/pages/publications.aspx?parent=R-REG-RR-2020&media=electronic

CHALMERS

Genesis VLBI signal

Standard VLBI equation relating signal strength (spectral flux density F), station sensitivities (SEFD), bandwidth B, number of channels N, and observation time t :

$$SNR = \frac{1}{\eta} \frac{F}{\sqrt{SEFD_1 \cdot SEFD_2}} \sqrt{2 \cdot B \cdot N \cdot t}$$

Genesis VLBI signal should be:

- "White noise", i.e. flat spectrum
- Same spectral flux density *F* at all stations
- Tuneable and on/off possibility

Genesis signal strength?

- In VLBI we usually express the spectral flux density in Jy
- $1 Jy = 10^{-26} W m^{-2} Hz^{-1}$

 Histogram of spectral flux density of natural radio sources at X-band

Genesis: Tuneable signal strength

• Logarithmic tuning

CHALMERS

- Max. spectral flux density $F_{max} = 10 \text{ Jy}$
- Attenuation in 21 steps: $A = \begin{bmatrix} 0 & 20 \end{bmatrix} dB$
- on/off switch possibility

$$F = F_{max} \cdot 10^{\frac{-A}{10}}$$

A (dB)	F (Jy)	A (dB)	F (Jy)
0	10.0	11	0.7943
1	7.9433	12	0.6310
2	6.3096	13	0.5012
3	5.0119	14	0.3981
4	3.9811	15	0.3162
5	3.1623	16	0.2512
6	2.5119	17	0.1995
7	1.9953	18	0.1585
8	1.5849	19	0.1259
9	1.2589	20	0.1
10	1.0		

Department of Space, Earth and Environment

Signal strength and propagation losses

• Antenna pattern

CHALMERS

- Usually 3 dB between bore sight and HPBW edges
- Free space loss
 - Distance and frequency dependent
- Atmospheric losses
 - Frequency and weather dependent
 - Atmospheric gas attenuation
 - Cloud attenuation
 - Scintillation attenuation
 - Rain attenuation

Department of Space, Earth and Environment

Free space loss effect:

Free space loss:

$$L_{FS} = \left(\frac{4 \cdot \pi \cdot R \cdot f}{c}\right)^2$$

Frequency	3.2 GHz	5.41 GHz	8.3 GHz	9.55 GHz
L _{FS_(nadir)}	178.1 dB	182.7 dB	186.4 dB	187.6 dB
$L_{FS_{edge}}$	182.6 dB	187.2 dB	190.9 dB	192.1 dB
ΔL_{FS}	4.5 dB	4.5 dB	4.5 dB	4.5 dB

Assuming an HPBW opening angle of 61.732°, i.e. corresponding to ε_{min} = 5°

Chalmers University of Technology

Atmospheric losses

- ITU-R recommendation
 - ITU-R P.618

- Attenuation due to
 - Atmospheric gases
 - Clouds
 - Scintillation
 - Rain

ITUPublications Recommendations

International Telecommunication Union Radiocommunication Sector

Recommendation ITU-R P.618-14 (08/2023)

P Series: Radiowave propagation

Propagation data and prediction methods required for the design of Earth-space telecommunication systems

Chalmers University of Technology

CHALMERS

Example: Ishioka, f=3.2 GHz

Example: Ishioka, f=9.55 GHz

Differential losses 5° vs. 90° elevation

Station	Ishioka		Onsala		
Frequency (GHz)	3.2	9.55	3.2	9.55	
Genesis antenna pattern	-3 dB	-3 dB	-3 dB	-3 dB	Genesis
Free space loss	-4.5 dB	-4.5 dB	-4.5 dB	-4.5 dB	specific
					_
Atmosphere	-3.0 dB	–7.9 dB	–2.5 dB	–5.4 dB	٦ "
Rain attenuation	–0.5 dB	–15.1 dB	–0.1 dB	-6.1 dB	∽ ″normal′
Total clear sky	– 13.3 dB	-15.6 dB	-12.8 dB	– 12.9 dB	
Total in rain	– 13.8 dB	-30.7 dB	–12.9 dB	– 19.0 dB	

Open questions

- Can one single transmit antenna be realized?
- How to minimize / treat impact of antenna phase center variation?
- How to achieve ISO-flux?
- How to handle non-ISO flux in scheduling?

ground station fidelity, etc.

Example: VGOS @ OSO as planned originally

"Genesis-VGOS" @ OSO

Department of Space, Earth and Environment

Genesis band-3 (8.2–8.4 GHz) Max hold freqs -> 2.5 -12.0 GHz EI=1 EI=10 EI=20 EI=30 FI=40 -74 EI=50 EI=60 EI=70 EI=80 -76 -80 Ê dB -82 ř 8.1 8.2 8.3 8.5 8.6 8.7 8.8 8.9 9 8 $\times 10^9$ Frequency

Department of Space, Earth and Environment

Genesis band-4 (9.3–9.8 GHz) Max hold freqs -> 2.5 -12.0 GHz EI=1 EI=10 EI=20 EI=30 EI=40 EI=50 EI=60 EI=70 EI=80 풤 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 $\times 10^9$ Frequency

So far we know

- Most/all VGOS stations will need to install new equipment to be able to observe the Genesis frequencies
 - switches for the signal chain necessary
 - should be controlable from the VLBI FS
 - potentially additional filters
- Stations might have different RFI situations at the Genesis frequencies

To do list

- Collect "station fidelity" information for as many as possible VGOS stations worldwide
- Start testing Genesis frequency setup with quasar observations
- Test also "mode switching" approaches, i.e. switching between standard VO and Genesis setups

delay resolution and correlation, etc.

Channel selection for Genesis frequencies

3100-3300 MHz	5250–5570 MHz	8200–8400 MHz	9300–9800 MHz		
BAND A 3132.4 32.0 L	BAND B 5276.4 32.0 L	BAND C 8220.4 32.0 L	BAND D 9340.4 32.0 L		
BAND A 3164.4 32.0 L	BAND B 5308.4 32.0 L	BAND C 8252.4 32.0 L	BAND D 9372.4 32.0 L		
BAND A 3196.4 32.0 L	BAND B 5340.4 32.0 L	BAND C 8316.4 32.0 L	BAND D 9404.4 32.0 L		
BAND A 3260.4 32.0 L	BAND B 5372.4 32.0 L	BAND C 8348.4 32.0 L	BAND D 9436.4 32.0 L		
BAND A 3292.4 32.0 L	BAND B 5404.4 32.0 L	BAND C 8380.4 32.0 L	BAND D 9468.4 32.0 L		
	BAND B 5468.4 32.0 L		BAND D 9500.4 32.0 L		
	BAND B 5500.4 32.0 L		BAND D 9564.4 32.0 L		
	BAND B 5532.4 32.0 L		BAND D 9596.4 32.0 L		
	BAND B 5564.4 32.0 L		BAND D 9660.4 32.0 L		
			BAND D 9692.4 32.0 L		
			BAND D 9724.4 32.0 L		
5 channels	9 channels	5 channels	BAND D 9756.4 32.0 L		
			BAND D 9788.4 32.0 L		

=> In total 32 channels, total BW covered 1024 MHz in 4 bands.

13 channels

Delay resolution function with Genesis frequencies

(14) mode=G4, RF=3.1 to 9.8 GHz, BW=1024, 4-band, nchan=32

SNR 400, $d\tau = 0.5 \, ps$, $dTEC = 0.013 \, TECU$

※ ← → ⊕ Q 幸 🖽

Department of Space, Earth and Environment

Comparison: standard VGOS setup (VO)

(2) mode=VO, RF=3.0 to 10.6 GHz, BW=480, 4-band, nchan=32

SNR 400, $d\tau = 0.4 \, ps$, $dTEC = 0.010 \, TECU$

Department of Space, Earth and Environment

Chalmers University of Technology

Department of Space, Earth and Environment

CHALMERS

To do list

- Simulations with more realistic values
 - station SEFD and
 - signal spectral flux density
- Study also potential phase center variation effects

MP-5

simulations

General goals

- Realistic simulations
 - Realistic orbit

CHALMERS

- Realistic ground station network
- Study determination of "geodetic parameters" from Genesis-VLBI
 - Station positions and satellite orbit
 - Earth orientation parameters
 - Signal propagation parameters

Important:

• There should be no harm on "standard" VLBI products, e.g. EOP!

Some previous work

- Klopotek et al., JOGE, 2020, 10.1007/s00190-020-01381-9
 - Lageos-1/-2 (also Galileo)
 - Legacy S/X VLBI (Cont17) schedules
 - VGOS simulated schedules
- Estimation of
 - Satellite orbit and geocenter
 - Station positions
 - Earth Rotation Parameters
 - Clock parameters and tropospheric parameters

Conclusions from previous work

- "... In the case of LAGEOS-1/-2 satellites, the obtained orbits are characterized by the precision of approximately 2.0 cm for CONT17-type schedules. ... "
- " ... it was shown that the combination of quasar and satellite observations could allow theoretically for simultaneous estimation of ERP (polar motion and UT1-UTC) along with geocenter offsets, VLBI station positions and satellite orbits. Compared to the reference solution including only quasar observations, ERP and station positions, derived based on the CONT17 network, were degraded only slightly for satellite observation precision levels not better than the precision level of the quasar observations. No negative impact was noticeable, however, in the case of satellite observations and the VGOS-type network. ... "

Genesis example

Chalmers University of Technology

Example: 24 h visibility @ three stations

CHALMERS

Department of Space, Earth and Environment

Example: 24 h visibility VGOS network

60°E 120°E 180°

Recent simulations

- Schunck et al., 2024, *Remote Sensing*, doi 10.3390/rs16173234
- Three different VGOS networks used:
 - VGOS operational network (12 stations)
 - "VGOS-soon" network (20 stations)
 - VGOS planning network (29 stations)
- Simulated mixed-schedules with scan length
 - 30 s for natural radio sources
 - 10 s for Genesis

CHALMERS

Operational Bxpected to be operational soon In planning stage

180° 120°W 60°W

Global VGOS Station Networks

0°

Article

On the Integration of VLBI Observations to GENESIS into Global VGOS Operations

David Schunck *🕑, Lucia McCallum 😳 and Guifré Molera Calvés 💿

Analysis approaches

- Analysis of pure radio astronomical schedules => reference
- Analysis of mixed schedules
 - Only using radio astronomical observations
 - Using both observations to natural radio source and Genesis
- No orbit estimation

CHALMERS

 EOPs and radio sources fixed for combined analysis

Some results from Schunck et al., 2024

- Impact of Genesis on VGOS is quasi-negligible
 - With 5 min repeat time on Genesis => no negativ impact on VGOS products
- Frame tie after one year 2-4 mm, assuming
 - 3 mixed sessions per week
 - Assuming orbit errors of 5 cm

CHALMERS

The inclination question

- The other space geodetic techniques, primarily SLR and DORIS, are in favour of a lower inclination, e.g. 60 degree
- Reasons are estimating geocenter z-component and seperating draconitic and annual orbit variations
- Some simulations on impact of inclination on VGOS visibility
 - Schunck et al., IAG symposia, doi 10.1007/1345_2024_245
 - Schartner

Gensis visibility as function of inclination

Visibility of Genesis for today's VGOS

h=6000 km, i=95°

h=6000 km, i=60°

Ref. Matthias Schartner, ETH Zürich

Visibility of Genesis for future VGOS

h=6000 km, i=95°

h=6000 km, i=60°

Ref. Matthias Schartner, ETH

Importance of Genesis inclination

- No big difference in terms of visibility
- About ± 10–15 % in visibility time
- Larger variations due to scheduling possible
- Orbit altitude has larger impact
- However, impact on orbit determination with VLBI has not been quantified yet

PRN option

Idea: One-way-ranging, time transfer

- Chip-rate of 160 Mchip/s needs 320 MHz and can be accommodated in Genesis band-2 and band-4
- 160 Mchip/s => 19 mm (62.5 ps) measurement accuracy, assuming 1 % of the chip length can be resolved
- Would be > 15 times better than GPS P-code measurements
- Seems to be attractive for e.g. time transfer, i.e. distribute same time from the ultra-stable oscillator onboard Genesis to several ground stations worldwide

"Genesis-VGOS" @ OSO

CHALMERS

DBBC3L-8H8H architecture

GCoMo : downconvert 4 GHz bandwidth

ADBL3: sampler board sampling representation 10 bit Equivalent sample rate 2-4-8 GSps

CORE3H: FPGA processing board

=> Question: Where to tap the Genesis PRN signals?

CHALMERS

Tapping Genesis PRN?

- After the ADB3L sampler?
- Possibilities need to be checked, also with RDBE/R2DBE

Department of Space, Earth and Environment

Open questions

- What to do with Genesis band-1 and band-3 (B=200 MHz)?
- How to embed PRN signal in white noise signal for "classical VLBI"?
- Any negative effects on "classical VLBI"?

Chalmers University of Technology

Questions?

