VGOS-related work at the Onsala Space Observatory

Lim Chin Chuan, Rüdiger Haas, Mugundhan Vijayaraghavan, Gary Hovey

Department of Space, Earth and Environment

Outline

- 1) Testing 16 Gbps recording, 128 channels
- 2) Holography of the OTT
- 3) Invar measurements of OTT telescope towers

Onsala Space Observatory

CHALMERS

Onsala Twin Telescopes

- MTM/OHB 13.2 m telescopes
 - Oe: QRFH 3-18 GHz
 - Ow: Eleven-feed 2-14 GHz
- Two FS computers
- Two DBBC3 backends
- Several Flexbuff recorders
- Inaugurated 2017 and operational since 2020

1) Testing 16 Gbps, 128 channel recording

- "Standard" VGOS observations:
 - Four bands with 8 channels of 32 MHz each, in 2 polarizations,
 - => 64 channels (i.e. 4 x 8 x 2)
 - 8 Gbps per system
 - Using operationally DBBC3 firmware v125
- Test observations in 2024:
 - Using DBBC3 firmware v126
 - Four bands with 16 channels of 32 MHz each, in 2 polarizations
 - => 128 channels (i.e. 4 x 16 x 2)
 - 16 Gbps per system: two jive5ab ports with 8 Gbps each
 - Four shared CPU cores between the two flexbuffs

VGOS operational "VO"

Department of Space, Earth and Environment

<u>CHALMERS</u>

VO

Department of Space, Earth and Environment

VGOS "OSO 128"

Department of Space, Earth and Environment

VGOS "OSO 128: 64 odd / 64 even"

odd	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2 0	2 1	2 2	2 3	2 4	2 5	2 6	2 7	2 8	2 9	3 0	3 1	3 2	 4 9	5 0	5 1	5 2	5 3	5 4	5 5	5 6	5 7	5 8	5 9	6 0	6 1	6 2	6 3	6 4
А	1		3		5		7		9		1 1										2 1		2 3																									
В	1		3								1 1				1 5																		4 9		5 1								5 9				6 3	
С	1		3		5						1 1				1 5										2 5				2 9		3 1																	
D	1		3		5						1 1				1 5										2 5				2 9		3 1																	
even	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2 0	2 1	2 2	2 3	2 4	2 5	2 6	2 7	2 8	2 9	3 0	3 1	3 2	 4 9	5 0	5 1	5 2	5 3	5 4	5 5	5 6	5 7	5 8	5 9	6 0	6 1	6 2	6 3	6 4
A		2		4		6		8		1 0		1 2										2 2		2 4																								
В		2		4								1 2				1 6																		5 0		5 2								6 0				6 4
С		2		4		6						1 2				1 6										2 6				3 0		3 2																
D		2		4		6						1 2				1 6										2 6				3 0		3 2																

Department of Space, Earth and Environment

Department of Space, Earth and Environment

Observation and experience

- Observation of radio source 3C147 for 120 s
- Successful 128 channel per station recording (i.e. 16 Gbps)
 - No data loss
- Successful 128 channel DiFX correlation
- Problems:
 - difx2mk4 seems currently to have internal restrictions, => no useful phase information for more than 64 channels
 - also difx2fits cannot handle more than 64 channels
 - some channels are heavily affected by local RFI @ OSO

Analysis approach

- Focus on 64 channels only
 - a) Correlating all 128 x/y-pol channels, then fringe-fitting only x-pol and y-pol
 - b) Correlating separately 64 x-pol and 64 y-pol channels, and fringe-fitting separately
 - Deselect same RFI-affected channels in fringe-fitting
- Fourfit fringe-fitting with several options, with manual phase-cal:
 - 50 (out of 64) x-pol or y-pol channels
 - 25 (out of 32) odd x-pol or y-pol channels
 - 25 (out of 32) even y-pol or y-pol channels
 - 24 (out of 32) x-pol or y-pol channels in band a/b
 - 30 (out of 32) x-pol or y-pol channels in band b/c
 - 26 (out of 32) x-pol or y-pol channels in band c/d

Chalmers University of Technology

Chalmers University of Technology

Department of Space, Earth and Environment

Chalmers University of Technology

Correlating 64 y–pol channels Fringe-fitting 26 y-pol c/d

warning: xH spectrum is normalized for full band FET-as spectrum is excluded XP amplitude increases. Amp and SNR calculations are appro frequency notches from 6676.000000 to 11394.600000

Similar plots and behaviour for x-pol

u.v (fr/asec) -0.003_0.006

Correlating 64 y-pol channels

SNR 1700.3

3C147.3GMKO3. 285-0837. ST

41.532 1.3

0.0e+00

-0.000497

6000.0000

F42854

1.000

SBD -0.008975 MBD -0.009245

Fringe rate (Hz)

n TEC -28.199

from (MHz)

Yr:day 2024:285

start 083703.00

Stop 083903.00

FRT 083803.00

2024:288:195718

2024:289:130017

2023-102-115303

BA & Dec (J2000

05h42m36.137901s

+49°51'07.233700

8.97500E-03

6.01003E-07

sb window (us

mb window (us)

1.0E-05

3.1E-08

Corr/FF/build

PFD

Exp

Exper # 1234

ONSA13NE - ONSA13SW, fgroup X, pol YY

Fringe-fitting 30 y-pol b/c

Amp. and Phase vs. time for each freq., 6 segs, 20 APs / seg (20.00 sec / seg.), time ticks 30 sec

Mk4/DiFX fourfit 3.24 rev 3753

LD4754326458E-02

4998316432E-0

Interp

av antabas from 4105 200195 to 2650 500000

az 293.7 el 47.1 pa 49.9

iband delay (use

0.9

hase delay (us

mp/seg (%) h/frg (døg) Aprion clock (used

0.000

41.321

41.468

raidz0/frincetests/42854_br/1234/285-0837//ST_3GMKO3__Output file: Sur

Apriori plockrate /us/si

CHALMERS

Correlating 64 y-pol channels Fringe-fitting 24 y-pol a/b

requency notches from 3045.50000 to 5898.500000

Department of Space, Earth and Environment

1200004E-0

cal rate: 0.000E+00. 0.000E+00 (us/s

6.86382495480E-

its/sample: 2x2

Oata rate

Resid photelay (usec

SampCntNorm: disable

p/s): 64 MBpts 512 Amb 0.031 ur

Summary

	type	channels		х-ро	bl		у-ро		
			SNR	phase	delay	SNR	phase	delay	
Some	128 corr	50 (64)	1884	350.0	-72.095 ns	2027	356.0	-76.950 ns	
differences	64 corr	50 (64)	1884	348.3	-71.729 ns	2030	356.0	-76.905 ns	
	64 corr	25 odd (32)	1296	351.5	-72.095 ns	1395	355.0	-76.950 ns	Agreement
	64 corr	25 even (32)	1368	348.5	-72.095 ns	1472	357.1	-76.951 ns	s within 1 ps
	64 corr	a/b, 24 (32)	1608	357.8	-77.149 ns	1920	339.6	-77.984 ns	
the spectrum	64 corr	b/c, 30 (32)	1789	356.0	-70.634 ns	1700	0.4	-80.746 ns	
	64 corr	c/d, 26 (32)	1081	352.2	-69.951 ns	1000	15.6	-76.331 ns	

Preliminary conclusions

- Successful observation with 16 Gbps (128 channels)
- DifX correlation seems to work with 128 channels
- Restrictions in difx2mk4 and difx2fits complicate further analysis
 - Phase information gets partially lost when using > 64 channels
- Correlating 128 vs 64 gives slightly different results
 - Seems not to be related to fourfit
 - Potentially another difx2mk4 issue?
- Odd/even channel analysis gives results within 1ps

2) Holography

- Using geostationary satellite EUTELSAT-16
 - @ OSO: AZ 175, EL 24
 - Frequency 11 GHz and bandwidth 1 MHz
 - Feeding RF-signal from OTT to a dedicated FPGA
- Stop-and-go control with the VLBI FS
 - ONSA13NE "staring at" EUTELSAT-16
 - ONSA13SW "scanning" with 107 positions in AZ and 108 in EL
- Real-time correlation with FPGA, post-processing with inverse FFT
 - Derive aperture illumination
 - Derive aperture phase

Flowchart

Department of Space, Earth and Environment

Observation and correlation

grid 107 x 108 points Ow x-pol Oe x-pol Oe y-pol Ow y-pol n mnn Oe x-pol Elevation (deg) Oe y-pol 800 1000 180 -Ow x-pol Ow y-pol Azimuth (deg) 38 x 38 HPBW

Department of Space, Earth and Environment

ONSA13SW beam maps (dB)

Department of Space, Earth and Environment

CHALMERS

Onsala Space Observatory

- 20

15

10

- 5

-5

-10

Chalmers University of Technology

ONSA13SW aperture amplitude (dB)

CHALMERS

x-pol

y-pol

Department of Space, Earth and Environment

ONSA13SW ray path length (m)

Department of Space, Earth and Environment

CHALMERS

Chalmers University of Technology

Previous results for ONSA13NE (QRFH)

Observed x-pol

Department of Space, Earth and Environment

CHALMERS

Previous results for ONSA13NE (QRFH)

Department of Space, Earth and Environment

Preliminary conclusions

- Successful holography with ONSA13SW and ONSA13NE
 - Results agree reasonably with simulations
 - Phase is impacted by instrumental and environmental effects
 - Surface roughness, deformation, subreflector deformation, atmosphere, oscillator problems, satellite position errors
 - Observations take rather (too) long
- Plans for improvement:
 - Using same oscillator reference for down-conversion and ADC
 - Characterizing phase stability
 - Reducing observation time
 - Test with natural radio source

3) Invar measurements

- Two invar measurement systems
- Installed December 2023

CHALMERS

- Invar wire hanging in the middle of telescope tower
- Weight with magnet to keep the wire straight
- Sensor measuring the distance to the magnet ~25 mm
- Data with 1 s sampling

Chalmers University of Technology

Department of Space, Earth and Environment

Chalmers University of Technology

CHALMERS

One month of invar measurements

- General: rather large variations ± 0.5 mm from second to second
- Smoothing necessary
- OW shows more "smooth" invar measurements
- OE clearly affected by telescope operations

Zooming in to five days

- Both OE and OW were observing during these days
 - VO4003
 - B24006 & C24006
 - B24007 & C24007
- OE invar measurements more affected than OW

Standard deviations

- General: noise on the level of 0.2 mm
- Smoothing necessary
- Telescope operation clearly visible
- OE has more scatter than OW

Preliminary conclusions

- Invar measurement systems have been installed on the OTT
- Measurements are rather noisy
 - Smoothing necessary to derive data that maybe useful for post-processing
- Telescope movement during operations affects the data
 - OE more affected than OW
- More investigations necessary to identify reason

Chalmers University of Technology

CHALMERS

Questions?