Haystack Technology Roadmap

Russ McWhirter, John Barrett, Pedro Elosegui, Chet Ruszczyk, Ganesh Rajagopalan, Dan Hoak, Alex Burns, Haystack IT Dept.

MIT Haystack Observatory

Outline

- Haystack Research and Collaboration Network (RECN)
- Development of Digital Backend Version 5 (DBEv5)
- Haystack data storage development

Prior Haystack e-transfer architecture

Haystack Research and Collaboration Network (RECN)

- Highlights
 - 400Gbps connectivity now available
 - One 100Gbps fiber lit, with connectivity to Internet2 thru campus
 - Science DMZ
 - Funded by NASA SGP
 - Renamed Science Isolated Storage (SIS) zone connected and available

SIS Objectives

- Network architecture expandable for other research areas storage nodes, e.g. Astronomy
- Ability to read in data for correlation directly or via sneaker net
 - Consideration is the number of stations participating in the experiment
 - Minimize human interaction for correlation time
 - Transfer of modules via sneakernet
- Evaluate processes to reduce e-transfer to correlation time
 - Critical for Geodesy where 16 stations presently observing
 - 3 weeks to get data for correlation
- Provide 100Gbps network to Westford for e-transfer

SIS Storage

- Network attached storage (NAS) nodes
 - Three NAS's
 - 2.6 PB of total storage
 - Two flavors of processor
 - Intel / AMD
 - Evaluating performance interacting with correlator to directly pull data from NAS nodes
- Mark6+
 - To continue sneaker net based upon number of stations
 - 32 Gbps average input recording rates

RECN Network Diagram

MIT VGOS Signal Chain

DBEv5 on CASPER architecture

- Goal was a drop in replacement for the R2DBE's
 - Same personality / features
 - 2 GHz IF processing
 - Port existing CASPER based personality
 - Utilizes VHDL and CASPER blocks to maximize performance
 - The CASPER filterbanks channelize the input signals, which are then re-quantized to 2bits, and the data are output in VDIF protocol through the 100-GigE outputs
 - Extend for GRITSS optional data path (Marco Midon presentation)
 - Software configurable between VGOS and GRITSS
- Leverages hardware commercially available
 - 4x2 RFSOC model and features here
 - Max 6 GHz Input Freq
 - 14 bit ADC
 - Onboard synthesizer
 - FPGA has 4272 DSP slices (double of Roach2)
 - 100G NIC egress for VLBI data

CASPER Realities

- Simulations of ported R2 Personality exposed critical bug
 - 100 Gbps NIC could not be clocked at 256 MHz
 - Buffer overflows
 - Works up to 255 MHz then fails
 - Mitigation strategy was to reduce the internal clock from 256 to 128 MHz
 - Reduces the Poly phase filter bank (PFB) block from processing 2GHz bandwidth to 1 GHz

- Meets VGOS requirements

CASPER Realities

- Reduction of PFB clock to 128 MHz results in
 - 32 points of the Fast Fourier Transform (FFT) design versus present 64 points of the original design
- 2nd bug discovered
 - CASPER FFT block does not work below 64 points
- Interfacing with Casper @ UC Berkeley to resolve
 - 100 Gbps network interface is not their own
 - Difficult to debug and correct not an option
 - FFT block they will look into
 - Mitigation strategy is to use Xilink FFT block (verified)

Update Signal Chain Architecture

Haystack Data Storage Development

- Mark6 have been deployed since 2015
 - Workhorse for Geodesy and EHT
 - Extended to Mark6+
 - 32 Gbps capability
 - And higher rates (see John Barretts presentation Weds)
 - Reality science and backend technology are pushing higher data rates
 - Working on new storage stategy

Storage Strategy

- Two tier approach
- Tier 1 is an "edge router buffer"
- Tier 2 is any legacy storage node in service
 Mark6's
 - NAS (e.g. flex buff)
 - Any thing else used
- Resource broker that configures
 - Data flows based on ingress data rate to Tier 1
 - Egress rates and configurations available to Tier 2 nodes

Storage Architecture

Tier 1

- HERB 1
 - Sorry broke the "MarkX" name since it is not a data recorder but a high speed storage buffer
 - Name can be
 - Tribute to the original founder of Haystack "Herb Weis"
 - See origin story on the outside wall
 - Or Haystack Edge Router Buffer
 - Your call. 🙂
 - Hardware base system identified (ordered)
 - Development plan established

Summary

- Haystack has 100 Gbps to Science Isolated Storage for improved e-transfer to correlation times.
- MIT/NASA VGOS network switching to R2DBEs
- MIT/NASA GRITSS DBEv5 is pathfinder to sustainable support
- Introduction to new storage architecture and the "H1"

