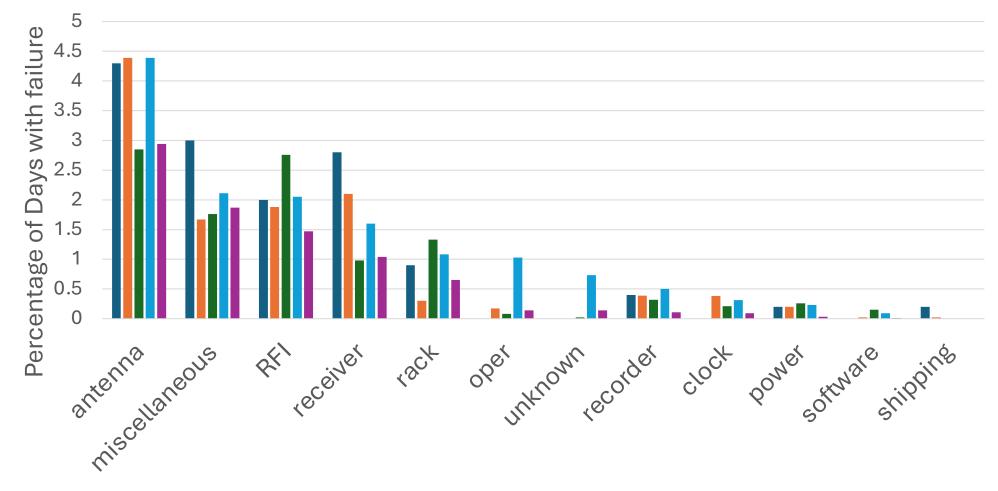

Impact of Operations on Data Analysis (Part 1)

Dhiman Mondal

Thanks to Sara Hardin, Ed Himwich, Axel Nothnagel


Impact of station "quality" on TRF realization

HAYSTACK

Station "quality" here means precision (center), accuracy (right), and/or both

How have the VGOS stations been performing?

HAYSTACK

See TOW session by Burns

■ 2018 ■ 2021 ■ 2022 ■ 2023 ■ 2024

Correlator/Station report

- Provides an initial idea about station performances
 - Warm receiver
 - Antenna slewing problems
 - Station not operational, i.e., "down" or unreliable
 - Cable calibration is not working
 - Phase-calibration signal absent or highly variable
 - No met data
- Provides insights about the data quality
 - Channel or band removed
 - Low SNR, no-detection

Analysts know what to expect

+ Which station(s) to down-weight in the analysis

+ Which station(s) to use as a clock reference

+ Which cable-cal to use

What do VGOS data analysts see?

Group delay per baseline

Group delay uncertainties

Cable calibration data

Weather data (Met data)

Correlator/Station Report

Measured vs Modeled

 $\tau = \tau_{g} + \tau_{clk} + \tau_{ins} + \tau_{ion} + \tau_{trop} + \tau_{rel} + \tau_{other} + \epsilon$

- **Signal** (geometry => position)
- Rest is "noise"
 - Clocks
 - Ionosphere
 - Troposphere
 - Electronics, etc.

Factors that affect geodetic precision: delay error $\sigma_{\phi} \approx \frac{1}{SNR} (phase)$ $\sigma_{\tau} = \frac{\sigma_{\phi}}{\Delta v_{rms}} (group \, delay = geodesy)$ $SNR \propto S \frac{1}{\sqrt{SEFD_{1} SEFD_{2}}} \sqrt{2 \, \Delta v \, T_{int}}$

- $\sqrt{5LTD_1}$ $5LTD_2$
- $\sigma_{\phi,\tau}$: observation error (sigma; the smaller the better)
- SNR: signal-to-noise ratio (the larger the better)
- Δv_{rms} : effective bandwidth (the larger the better)
- S: source flux density (the larger the better, typically <= 1 Jy)
- SEFD_{1,2} at antenna 1,2 (the smaller the better, VGOS specification 2,500 Jy)
- Δv : bandwidth (the larger the better, VGOS 2-14 GHz)
- T_{int} : integration (recording time) of observation (the longer the better)

Geodetic precision and a warm receiver

- If one station's receiver is warm, that station's SEFD might typically go up by a factor of 3. Therefore, the average sigma would go up by a factor of $\sqrt{3}$, or about 1.7. A station position estimate that would have been precise to about 1-3 mm would instead be precise to about 2-5 mm.
- A warm receiver with an SEFD 3 times normal is equivalent to observing 1/3 of the time.
- Target (minimum) SNR values are typically 20 at X-band, and there are no fringes if SNR falls below about 7. With an SEFD 3 times normal, the no-fringes SNR becomes 12.
- A warm receiver at one station usually will not destroy an experiment as is, but it may prevent fringes to a high SEFD station if it was scheduled with a lower SNR target.

Other effects that increase SEFD

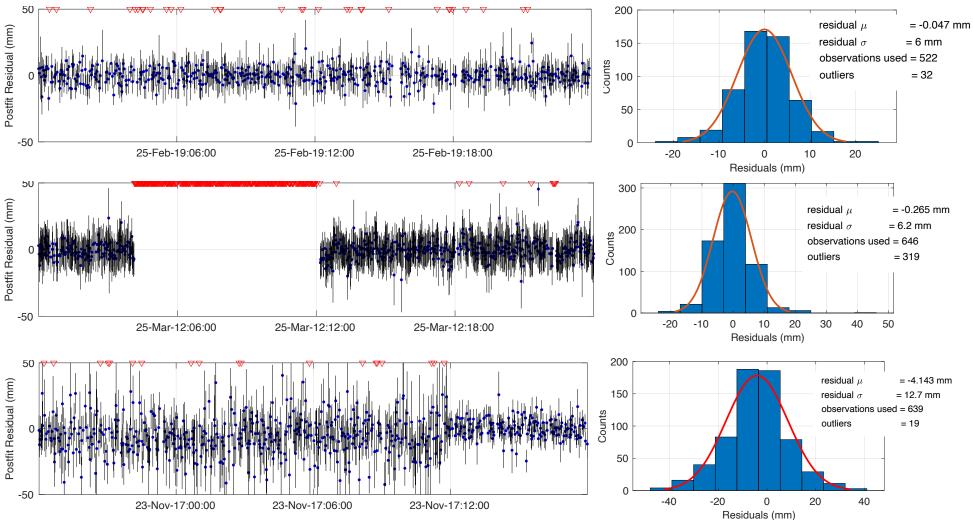
- Pointing off by one half of a full-width-half-maximum (FWHM) drops the response of the antenna by a factor of 2, and so doubles the SEFD, and the sigma is increased by $\sqrt{2}$.
- If the focus is off, the same rule applies, if the response is down half, the SEFD is doubled and the sigma is increased by $\sqrt{2}$.
- Poor image rejection
 - Frontend, doubles the noise level in all channels, so increases sigma by $\sqrt{2}$ (also does bad things to phase-cal: adds spurious signals)
 - VC/BBC, doubles the noise level in that channel, so increases the sigma by about a small amount, but also adds spurious signals

Variable phase-calibration signal

- Should be about 1% in power
- Too strong reduces sensitivity and produces spurious signals
- See TOW session by Rajagopalan

Missing channels

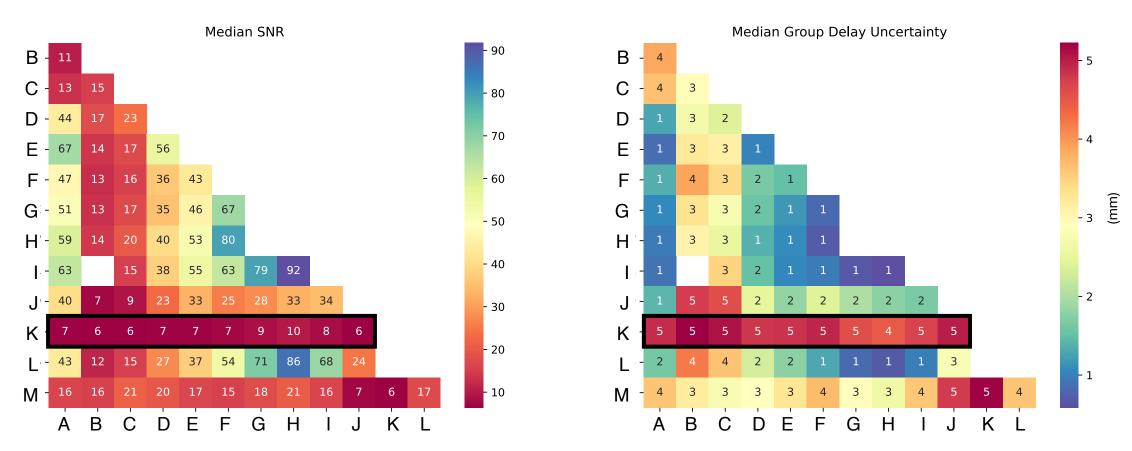
- Each lost channel reduces the VGOS data yield by about 3% (7% in S/X legacy)
- In addition, it can compromise the delay resolution function (Rogers, 1970; cf. Nothnagel memo)
- Recommended VGOS channel drop order TBD (cf. Himwich/Corey "dropping channels gracefully" memo for S/X legacy; #6, 11, 7, 2, 5)


Missing a session

- If you don't observe, please send an e-mail message to ivs-ops
- It is important so that correlators don't delay correlation waiting for data that will never arrive.
- Bottom line: send a message to ivs-ops

More on reporting in Part 2 by Sara Hardin

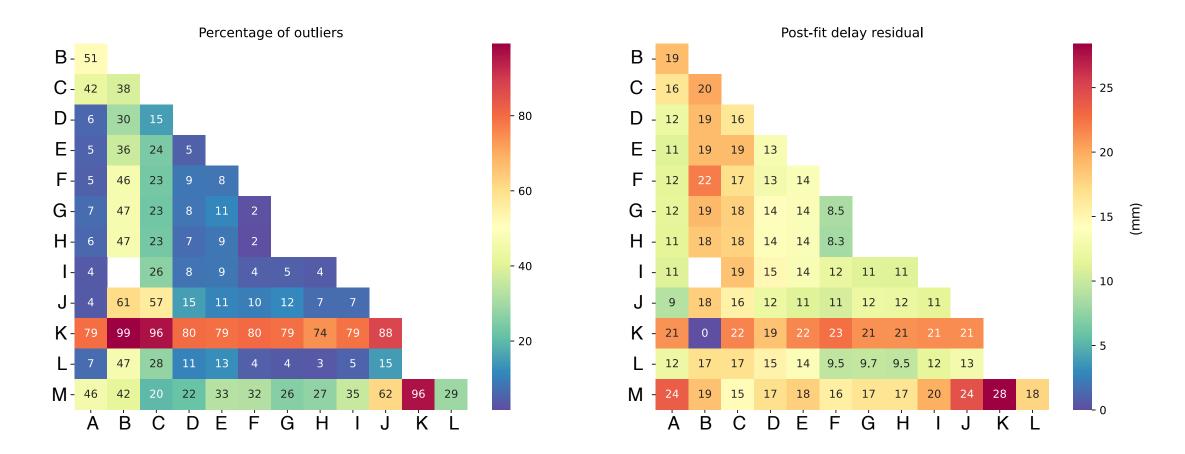
Missing band(s) and channel(s)


A : BandA Y-pol phasecal tones variable amplitude.
A : Removed channel from fringe fitting: h

A: Azimuth drive failure
071-0407a to 071-1210b,
no fringe detections.
A: Removed channel h
from fringe fitting due to
low amplitude.

A: No data in bandA prior to scan 321-1153
A: Channels abcdefgh excluded from fringe fitting prior to scan 321-1153

SNR vs. group delay uncertainty


Station K: Very low SNR. Many non-detections.

- Station B: Phasecal amplitudes variable in bandB. Removed channels g,h,z,C from fringe fitting.
- **Station J**: X-pol phasecal highly variable.

Station M: Missed scan. Removed channel I,C.

Deleted observations vs. post-fit delay residuals

