
HOPS4 and Software Updates

J. Barrett on behalf of the Haystack Geodesy Team

MIT Haystack Observatory

TOW Correlator Workshop – May 9, 2025

1 / 38



Outline

1 Introduction - background, history, motivation

2 The HOPS4 package, dependencies and installation

3 Notable difference and similarities with HOPS3

4 New capabilities and data formats

5 Comparison with HOPS3

6 On going work and future outlook

2 / 38



Background
HOPS - Haystack Observatory Post-processing System

Collection of utilities which provide post-correlation data processing for
VLBI data, including:

1 Importing data from a software correlator (DiFX)

2 Data flagging/removal of corrupted visibilities in time/frequency

3 Calibration and phase correction of data, as well as other manipulation

4 Fringe-fitting (solving for residual group-delay/delay-rate w.r.t to
correlator model) on a per-scan, per-baseline basis

5 Data quality analysis and visualization for debugging station problems

3 / 38



Brief History

1 HOPS has a multi-decade history as a post-processing/analysis
package and has evolved continuously over time.

1 Current C-code was written in the early 90’s by Colin Lonsdale, Roger
Cappallo and Cris Niell.

2 Additional adaptations made over time to provide additional knobs for
data treatment, support wider bandwidth, optimize SNR, and support
software correlators such as DiFX

2 fourfit – primary component is this fringe-fitting tool.

1 The basic algorithm was adopted from the FORTRAN routine FRNGE,
developed by Alan Rogers in late 70’s 1

2 Data flagging and calibration is configured via the fourfit control file.

3 Additional tools: alist & aedit (among others) – provide
diagnostics for debugging, inspection and evaluation of data quality.

1https://doi.org/10.1029/RS005i010p01239
4 / 38

https://doi.org/10.1029/RS005i010p01239


VGOS History/Upgrades

1 Multi-tone phase cal. & sampler delays 2

1 Fits multiple tone phasors per-channel to extract phase and delay offset
2 Resolves channel delay ambiguities of the same (physical) sampler

2 Ionospheric dTEC fitting

1 Correction to compensate for ionospheric dTEC dispersion
2 Introduced as outermost-loop of grid search – estimated simultaneously

with group delay

3 Pol-product summation (pseudo-Stokes-I) 3

1 Maximize SNR, eliminate dependence on ∆ parallactic angle
2 Requires per-station, per-polarization phase/delay offset corrections

4 Python post-processing scripts – manage control file generation and
diagnostics, parallel batch fringe fitting

5 Proxy-cable cal. for stations without hardware cable-cal.
2https://www.haystack.mit.edu/wp-content/uploads/2020/07/docs_hops_

011_multitone_phasecal.pdf
3https://ivscc.gsfc.nasa.gov/publications/gm2014/019_Cappallo.pdf

5 / 38

https://www.haystack.mit.edu/wp-content/uploads/2020/07/docs_hops_011_multitone_phasecal.pdf
https://www.haystack.mit.edu/wp-content/uploads/2020/07/docs_hops_011_multitone_phasecal.pdf
https://ivscc.gsfc.nasa.gov/publications/gm2014/019_Cappallo.pdf


Motivation to Upgrade HOPS

1 Goal: Eliminate limitations while maintaining existing capabilities

2 Technical limitations:
1 Relatively limited ability for dynamic memory allocation - fixed limit on

the number of stations, APs, and channels
2 Fully complex (amplitude and phase) band-pass corrections are not

possible (only phase/delay corrections)
3 Only a single per-scan/baseline (grid search) fringe-finding algorithm is

available
4 Currently no support for multi-processing, apart from

single-program-multiple-data

3 Practical limitations:
1 Plotting and results are not decoupled
2 Custom data treatment (e.g. band-pass correction) is limited to that

which is allowed by the control file parameters
3 File and data formats (Mk4-types) are restrictive and not easily

modified
4 Required use of old/unmaintained libraries (e.g. PGPLOT)

6 / 38



Additional Motivation / Future needs

1 Primary objectives:

1 Increase flexibility of data structures to support as-yet-unknown
(meta)data collections (no c-structs)

2 Enable the ability to implement multiple fringe-finding algorithms
3 Support user-injected python plugins for data manipulation
4 Enable fully complex (sub-channel) bandpass correction
5 Support VEX 2.0

2 Secondary Objectives:

1 Augment with SIMD parallelism (OpenCL/CUDA)
2 Allow for multiple plotting backends

7 / 38



The HOPS4 Package

1 The HOPS4 package consists of three main components:
1 The original HOPS3 C applications and libraries (3.26) - fourfit3,

alist3, fplot3 etc. These are provided along with all of the new
code for convenience, comparison testing, and general utility4.

2 The new C++ applications and libraries - fourfit4, alist4, fplot4,
etc.

3 Python scripts and extensions (e.g. vgos scripting)

2 HOPS4 has no required dependencies on the old C-libraries (with the
exception of mk4-data for import/export)

3 The new architecture supports the extension of the library/application
code in two ways:

1 Developer (compile-time, arbitrary) extensions to data-manipulation as
a new derived class of the ’data operator’ type

2 User (run-time, limited) extensions via a python plug-in interface

4 C++ is the primary language and the build system has changed to
CMake (instead of automake)

4symlinks with the original names are provided, e.g. fourfit → fourfit3
8 / 38



HOPS4 Installation

1 HOPS4 beta5 release now available on github:
https://github.com/MITHaystack/HOPS

2 HOPS4 installation follows the familiar configure/make/install
process, however, the configuration is now done via CMake

3 For example, on a fresh copy of ubuntu 22.04 to download and install:

#install the desired dependencies (HOPS4 & HOPS3):

sudo apt-get install build-essential cmake cmake-curses-gui python3-dev python3-

pip wget jq libfftw3-dev pgplot5 libgfortran5 libfftw3-dev libx11-dev

gnuplot binutils libxpm-dev ghostscript ghostscript-x

#then download the software and unpack it

wget https://github.com/MITHaystack/HOPS/archive/refs/tags/v4.0.0-beta2.tar.gz

tar -xzvf ./v4.0.0-beta2.tar.gz

cd ./HOPS-4.0.0-beta2

#configure the software

mkdir build

cd build/

ccmake ../ -DHOPS_PYPI_MANAGE_DEPS=ON #use OFF if numpy, matplotlib installed

#build and install

make -j8 && make install

5This release is intended for experimentation and familiarization only and is not
meant for production use or processing! 9 / 38

https://github.com/MITHaystack/HOPS


HOPS4 Pre-requisites

1 General philosophy is to minimize the required dependencies, and only
build additional functionality if optional dependencies are present:

2 The absolute mininum HOPS4 requirements for the three primary
HOPS4 applications (fourfit4, alist4, fplot4) are:

1 build-essential (GCC, GNU make, etc)
2 cmake, cmake-curses-gui
3 python3-dev python3-pip†

3 FFTW3 is optional but highly recommended, as the native FFT
implementation provided is slower

4 To install the original HOPS3 software as well, you will also need the
typical HOPS3 dependencies:

1 libfftw3-dev
2 pgplot5, libgfortran5
3 libx11-dev, gnuplot, binutils, libxpm-dev, ghostscript, ghostscript-x

10 / 38



HOPS4 Optional Dependencies
1 If present, optional dependencies will enable additional functionality

for HOPS4. These are
1 DIFXIO: enables the library DiFXInterface and the application

difx2hops (must have DIFXROOT defined when running cmake)
2 MPI: allows fourfit4 to be run in parallel using ’mpirun’
3 CUDA: experimental - enables GPU based multi-band delay search
4 OPENCL: experimental
5 Doxygen/Sphinx: experimental documentation generation

2 Most of these optional dependencies must also be toggled ’ON’ from
the cmake interface in order to trigger the build of the desired
functionality

3 Not a dependency, but useful tool for inspecting json files is jless6.

4 † Not strictly optional, but for plotting using fourfit4, pip must
install matplotlib, numpy and scipy. The flag
HOPS PYPY MANAGE DEPS toggles local install via pip. If you
already have these packages, this should be set to OFF.

6https://jless.io/
11 / 38



HOPS4 CMake Interface

12 / 38



Overview of HOPS3/HOPS4 workflow

1 Typical HOPS3 workflow:
• difx2mark4 used to convert DiFX output to mark4 type-1 & type-3 files
• fourfit3 used to fringe-fit, and create type-2 files
• vgosDbMake consumes the type-2 files and produces the database
• alist3 & fplot3 can be used to inspect the fringe output

13 / 38



Overview of HOPS3/HOPS4 workflow

1 Typical HOPS4 workflow:
• difx2hops used to convert DiFX output to (correlator) .cor and

(station) .sta files
• fourfit4 used to fringe-fit, can create .frng files or ’-k’ option to

create type-2 files
• vgosDbMake can consume the type-2 files and produce the database
• alist4 & fplot4 can be used to inspect the .frng files
• Export of .frng files directly to vgosDbMake is not yet available

14 / 38



Overview of software/tools in HOPS4
HOPS4 Tool HOPS3 equivalent Description
fourfit4 fourfit3 fringe fitting tool

fplot4 fplot3 fringe plot tool

alist4 alist3 fringe summary

difx2hops difx2mark4 creation of input files from DiFX

hops2json CorAsc2 binary file inspection

hops2keys CorAsc2 binary file summary

mark42hops conversion of mark4 files to hops4

vex2json conversion of vex to json

json2vex conversion of json to vex

aedit data inspection

adump alist data extraction

snratio correlator report tool

Currently, HOPS4 tools for the equivalent functionality of: fourmer,
average, fringex, and search are not yet available.

15 / 38



Notable differences & similarities

1 Majority of existing control file features and syntax is supported by
fourfit47. Most HOPS4 programs provide a ’–help’ option.

2 Fringe plots in HOPS4 are generated using python instead of
PGPLOT, & will (soon) support all of the existing content and data

3 To convert data from difx to HOPS4 format, use the utility difx2hops,
which supports most of the same syntax as difx2mark4

4 fourfit4 requires input files in the HOPS4 (.cor) format, but can
generate either Mark4 output (type 2xx) files or HOP4 (.frng) files.
Note: mark4 files generated with fourfit4 will not contain fringe
plots!

5 Existing VGOS post-processing scripts can be used with fourfit4,
but you must set the environmental variable
HOPS VPAL FRINGE FITTER=fourfit4 in order to use it, as the
default is fourfit3.

7With the exception of the deprecated features listed on next slide
16 / 38



Deprecated keywords and features
1 Mark4 hardware correlator specific features:

• index
• max parity
• x crc and y crc
• x slip sync and y slip sync
• use samples

2 Frequency switching related:
• switched
• gates
• period

3 Other:
• ra offset – was never implemented
• dec offset – was never implemented
• pc freqs
• interpolator – default has been ’simultaneous’ algorithm for some time,

’iterative’ has been removed
• fmatch bw pct

Furthermore pc mode ’ap by ap’ and ’normal’ have not been implemented,
only ’multitone’ and ’manual’ are currently allowed. 17 / 38



fourfit3 architecture

1 Monolithic
application

2 Control parameters
combined (or’d)
into single global
control structure

3 Global parameters
govern the
operation during
pre-
correction/fitting

4 One-pass, create
output and plot

18 / 38



fourfit4 architecture

19 / 38



HOPS4 Data Containers

1 ND-array template class with data-type and rank parameters + axes,
uses STL-style iterators

2 Axes are templated on coordinate type (float, string, etc.)

3 Axis interval labeling of array can be labeled with type-agnostic
key:value pairs for data selection (json)

4 I/O library allows for per-object retrieval (unlike the Mk4, no need to
read the entire file byte-by-byte to extract a single object)

5 Encompasses nearly all of the data objects in use by fourfit4

(visibilities, weights, pcal, station model, etc.)

6 Used in-memory as well as for the .cor, .sta, and .frng files

7 Where needed, heterogenous data (nested mixtures of strings and
numerical data) is stored as a json object in CBOR format

8 Utility hops2json is provided to allow text-based inspection of these
data files (like CorAsc2)

20 / 38



HOPS4 Data Containers

21 / 38



HOPS4 Data Operators

1 Abstracts away the interface for
data manipulation, and isolates
each discrete operation from the
rest of the program

2 Operator class only needs to
define initialization and
execution functions

3 Operators are built upon
configuration and inserted in
initialization/execution queue
when/where desired by category
(e.g. calibration)

4 Only pay for what you use

5 Categories: labeling, selection,
flagging, calibration

Operator interface:

class MHO_Operator

{

public:

MHO_Operator(){};

virtual ~MHO_Operator(){};

virtual bool Initialize() = 0;

virtual bool Execute() = 0;

}

22 / 38



Plugin mechanism

1 One specific type of data operator is a ’python plugin’

2 The Python interface is supported via the header-only pybind11 library

3 Bindings to container classes allow in-memory or file data to be
manipulated by user python scripts

4 User python code can be injected at runtime into the fringe fitter for
custom/experimental calculations with full access to in-memory
parameters and visibility/weight data

5 Data access on python side is via an interface which allows retrieval
by object name or UUID. ND-array data is exposed as a numpy array,
and heterogenous data is exposed as a Python dictionary

6 Some restrictions/limitations:

1 Python plugin operations are only applied at specify hooks/locations
(e.g. calibration or pre/post-fit)

2 Data can be accessed and modified, but can not be
resized/reshaped/deleted

23 / 38



Example user plugin

1 Fixing intra-channel phase jumps – discrete changes in phase at fixed
locations in each channel

2 Fixing this in HOPS3 would have required a devising an entirely new
custom control file feature

3 Implemented in a single (short) python function.

(a) Pre-corrected average xpower
spectrum

(b) Post-corrected average xpower
spectrum

Other possible plugins...

1 Station pol-swap relabeling (X → Y )
2 Auto G-code correction (weak channel cut) 24 / 38



Plotting in HOPS3

1 Diagnostic plot
generated for
each fringe

2 Plotting is is
done with
PGPLOT →
postscript

3 Plotting and mk4
data output
intertwined

25 / 38



Plotting in HOPS4

1 Fringe
results/output
files are now
independent of
plotting

2 New plotting
backend is
matplotlib

3 Can reformat/-
zoom/explore
data in more
detail, will allow
further
customization.

26 / 38



Numerical comparison

1 Before routine use of new code, we need to validate HOPS4 behavior
against HOPS3 (testing and debugging is on-going)

2 One straightforward comparison we’ve done so far is to simply
examine the Pseudo-Stokes-I Mk4 output of a VGOS session
(VR2404):

1 Use original production control file∗

2 Only compare fourfit4 vs fourfit3 (not testing scripting e.g.
vgoscf generate.py)

3 Fringe fitting was run via batch fourfit.py (ionex TEC file in use)
4 fourfit4 was passed the ’-k’ option to force it to produce Mk4 format

output
5 Scans with SNR< 10 were cut, as well as scans with G or H codes, and

short baselines (Oe-Ow or Ws-Wn)
6 Compare differences of a few select quantities (q-codes, residual mbd,

dTEC, phase, etc.)

27 / 38



First look: alist Q-code summary

1 Rough fringe quality overview as evaluated by fourfit3 vs.
fourfit4 for VR2404

Quality code: G H 0 1 2 3 4 5 6 7 8 9 ? Total

HOPS4 1249 1307 1940 2 3 22 62 308 740 2313 6893 16415 0 31254

HOPS3 1291 239 3081 0 5 10 40 159 630 2198 7108 16503 0 31264

Difference -42 1068 -1141 2 -2 12 22 149 110 115 -215 -88 0 -10

1 Behavior is for the most part quite similar, small fraction (∼ 1%) of
scans are shifted to lower quality codes (9,8 → 7,6,5)

2 Handful of scans (10) are missing? – we need to identify the origin of
this.

3 Main qualitative difference is that fourfit4 prefers to assign an
H-code over a quality code of 0 or a G-code, this is not entirely
unexpected due to known fourfit3 behavior.

28 / 38



Difference in residual multi-band delay

Majority of results are within ±2.5ps, but there are some outliers and
some curious ’side lobes’. Why?

29 / 38



∆τmbd vs. formal error

Difference in τmbd vs. the formal error as reported by fourfit3 (zoomed
in view). Outliers not shown. Notice the curious banding in this plot.

30 / 38



∆τmbd vs. formal error cont.

Two things discovered which contributed to the observed banding:

• RFI spike in channel (r) at station Ow which lead to divergent
behavior between fourfit3/4.

• There was a bug in the window caching mechanism in the
SDB/dTEC search in fourfit4

31 / 38



∆τmbd distribution

∆τmbd distribution after removing channel ’r’ from Ow and fixing window
bug.

32 / 38



∆τmbd distribution (zoomed)

Zoom into distribution of ∆τmbd .

33 / 38



Difference in residual multi-band delay

Bands eliminated, but still need to determine the cause of the remaining
difference in τmbd seen in the small fraction of scans which are the source

of the scatter in this plot.

34 / 38



Difference in dTEC

35 / 38



Difference in residual phase

Majority of results are within ±5◦.

36 / 38



Comparison test conclusions

1 A large majority of results are effectively the same between the two
implementations especially for the group delay, however, there is a
small fraction of outliers

2 These outliers need to be understood, as they may indicate
non-equivalent treatment of the data between the two
implementations.

3 It is also possible that some degree of numerical instability in the
fringe-fitting algorithm may be present which could cause small initial
differences to become magnified

4 Where possible these differences should be eliminated

5 The net effect of any remaining differences between the results of
fourfit4 and fourfit3 on the final geodetic results still needs to be
explored and quantified

37 / 38



Future outlook

1 The build out of full (existing) capabilities is nearing completion

2 HOPS3 isn’t going away (existing code is captured and will be
distributed alongside HOPS4)

3 New capabilities are ready to be explored – alternative fringe fitting
algorithms, ionospheric and source structure correction techniques,
etc.

4 Lots of on-going testing and verification to continue.

5 A lot of work on documentation needs to be done!

Thanks for listening!

38 / 38


