

RFI Sources, Identification and Mitigation Part 3: Impacts and Mitigations

13th IVS Technical Operations Workshop

May 4th – May 8th

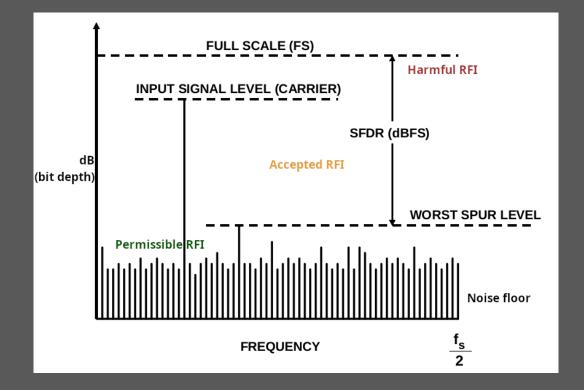
Samuel Thé, John Swoboda, José A. López-pérez

Credit: T. Hansen/IAU OAE/Creative Commons Attribution

RFI Impact and Mitigation

- RFI Impact
 - Receiver
 - Single dish observation
 - Interferometry
 - Geodesy VLBI
- Mitigation Procedure
 - Analog stage
 - Digital stage
 - Policy stage

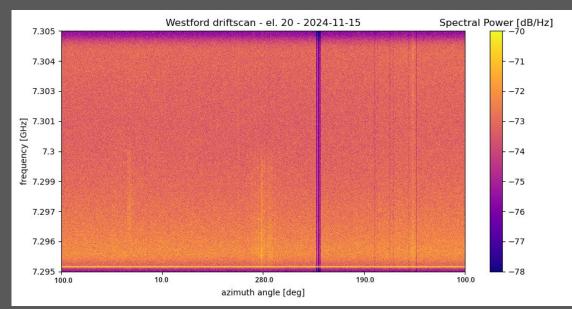
_ .. _ .

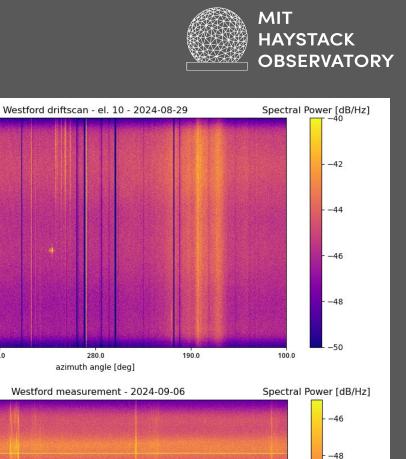

							Ra	adio Fre	equency	(GHz)							
(0.0 0.05	0.1	0.2	0.4		0.8	1.6	5	3.2	6.4	1:	2	24		50	100	200+
Geodesy							GNSS		Quas	sar Geodes	у						
Atmosphere		F	Radio Prop								Ozon	Ð	MWR		MWR	MWR	
Radiometry						M	WR/OCLI	MWR	MWR	MWR	MWR	MWR	MWR	MWR	MWR	MWR	MWR
Weather Radar	MST/RAS	3			WPR	BL			NWS		DoW			CMR		CMR	-
Geospace (passive)	Radio Prop	ME	TEC Scintillation	TEC	Scintillatio	on / IPS	TEC										
Geospace (active)	IONS CSR	ISR/CSR	ISR/CSF	R IS	SR/CSR				NEO		NEO	EES	S	EESS		NEO	
Radio Science Spectrum Usage Radio Astronomy	Low Fr	eq / EoR / Bursts	Solar Burs	t / Synch	nrotron / P	ulsar / Fl	H 1.42 RB	Cont	Line tinuum + Ste				H2O/NH	I3 Sid A3 ALMA1		HCN/Others 85-115 MA2 ALMA3+4	•

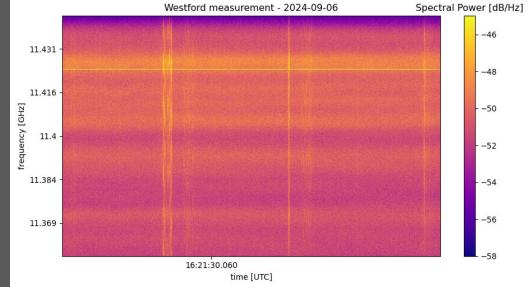
Impact on Frontend/Receiver

- Different RFI
 -> Bit depth gives flexibility
- Gain compression/Saturation

 -> Creates intermodulation products and harmonics
 -> Rise of noise floor
- Non-linearities
 - -> Constrain input power to < -40 dBm
- Low Noise Amplifier damage
 - -> First stage of the receiver that sets the gain
 - -> Very sensitive (power < 12 dBm)




Impact on Single Dish Observations


- Broadband RFI
 - -> Rise noise floor/Bias in total power, decrease sensitivity
- RFI changing with time or frequency or position

-> Cannot calibrate out

- Spectral lines can be distorted or degraded by RFI
- Calibration contaminated -> Bias in the absolute flux

8.406

8.398

8.391

N 8.383

8.375 8.367

8.359

8.352

8.344

100.0

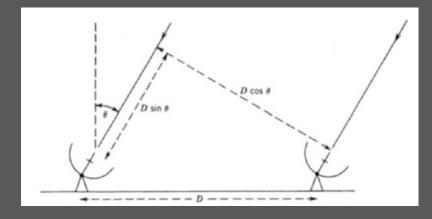
10.0

0

Impact on Interferometers

• If RFI seen by only antenna i can lead to fringe amplitude errors

- Sensitivity of this antenna will be lower
 - -> All baselines involving antenna i will have their SNR reduced


$$SEFD = \frac{2k T_{sys}}{A_{eff}}$$
 => $SNR \propto \sqrt{\frac{INTEG}{SEFD_i \cdot SEFD_j}}$

 $P_i * \overline{P_j}$

 $\sqrt{P_i^2 \cdot P_i^2}$

- Flagging for strong RFI
 - -> Losing observation time/integration time

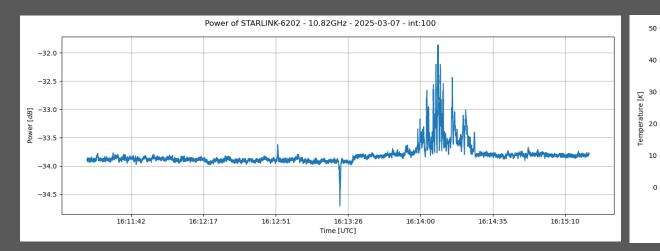
delay
$$au = rac{D}{c} \sin heta$$

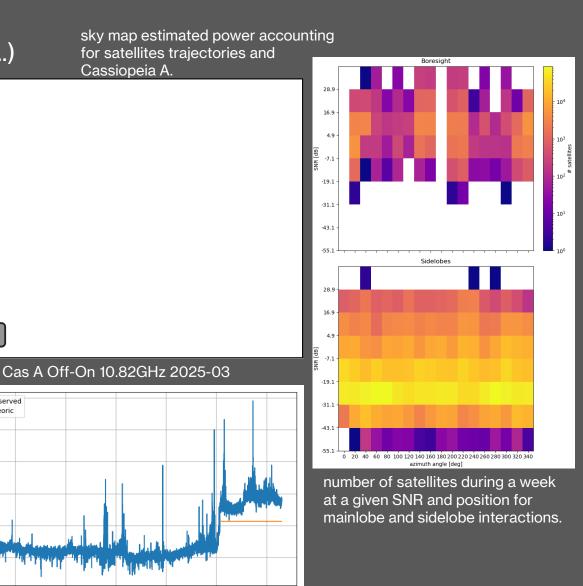
Impact on Geodesy VLBI

- **Group delay** : difference in time of arrival of same signal on two antennas.
 - -> Changes with Earth rotation
- Error on delay: $\sigma = \frac{1}{2\pi B \cdot SNR}$ with B : effective bandwidth And precision needed ~ 1ps
 - -> either high SNR or high B needed
- Bandwidth Synthesis: estimate phase slope between multiple smaller frequency channels
- If RFI in one or more small channels -> Impact the phase slop estimation

RFI Level	Baseline SNR	Offset
N- DEI	SNR	
N- DEI		
No RFI	1.000	16.9 picosec
$10\% \mathrm{RFI}$	0.953	15.9
$20\% \mathrm{~RFI}$	0.913	15.0
$30\% \mathrm{RFI}$	0.977	14.2
40% RFI	0.845	13.4
$50\% \mathrm{RFI}$	0.816	12.8
100% RFI	0.707	10.3
	20% RFI 30% RFI 40% RFI 50% RFI 100% RFI	20% RFI 0.913 30% RFI 0.977 40% RFI 0.845 50% RFI 0.816

Impact from Mega-Constellations of Satellites


observed
 theoric


07 14.40

07 14.45

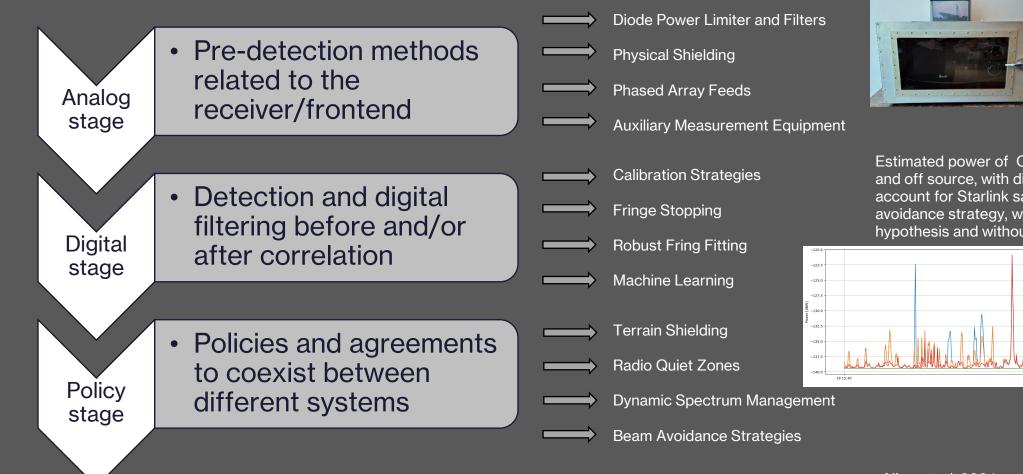
- Remote location is no longer an option (except in space...)
 - -> Currently, ~60 Starlink satellite above our heads at any given time
- Sidelobes interactions are becoming important
 - -> Aggregated power for single dish observation
 - -> Correlated noise for short baseline is possible

through mainlobes but also sidelobes

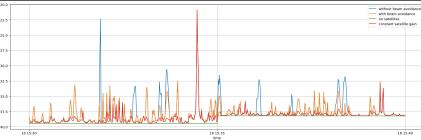
07 15:00

07 14.55

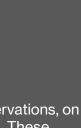
07 14.50


time (UTC

07 15:05


Mitigation Procedure

• Different steps to mitigate RFI for different strategies


Estimated power of Cassiopeia A observations, on and off source, with different scenarios. These account for Starlink satellites, using a beamavoidance strategy, with a low and constant gain hypothesis and without any satellites).

S-band HTS filter 0.1dB insertion

loss

Nhan et al. 2024 VGOS MEMO #062

- RFI have impacts on multiple scales of our systems
- We have ways to defend ourselves, especially in interferometry
- Mega-constellations of satellites are a new challenge
- Instrument design, digital processing and international agreements need to work together to coexist!

References

- Erickson, Rajagopalan and Burns, "Westford-SpaceX coordinated testing procedures for mitigation of adverse effects from Starlink direct-to-cell transmissions at S band", VGOS MEMO #062
- ITU-R RA.314-11: Preferred frequency bands for radio astronomical measurements below 1THz
- ITU-R RA.769-2: Protection criteria used for radio astronomical measurements
- ITU-R RA.2126-1: Techniques for mitigation of radio frequency intereference in radio astronomy
- Kesteven, "Radio-frequency interference mitigation in radio astronomy," in URSI Radio Science Bulletin, vol. 2007, no. 322, pp. 9-18, Sept. 2007
- Nhan et al., "Toward Spectrum Coexistence: First Demonstration of the Effectiveness of Boresight Avoidance between the NRAO Green Bank Telescope and Starlink Satellites", 2024 *ApJL* **971** L49
- Shaffer, "RFI: Effects on Bandwidth Synthesis", IVS 2000 GM Proceedings
- Wu et al., "Research on a Multi-source RFI Mitigation Algorithm Using a Reference Antenna Array", *Research in Astronomy and Astrophysics*, vol. 24, no. 11, Art. no. 115016, IOP, 2024

11

Questions?