Impact of Time-dependent Atmospheric Turbulence on Geodetic VLBI Precision

Alexandra Mohn^{1,2}, Dhiman Mondal², Pedro Elosegui², Chester Ruszczyk², John Barrett², Dan Hoak², Russ McWhirter²

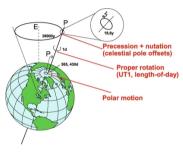
¹University of Edinburgh

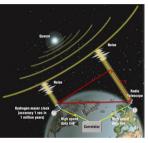
²MIT Havstack Observatory

2025 REU Symposium August 7, 2025

Outline

- Introduction
- Atmospheric Delays & Geodetic Modelling
- 3 Traditional Simulation Approach
- 4 Project Goals
- 6 Data & Methods

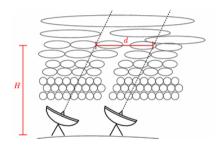

- 6 Simulations of Seasonal Variations
- **7** Simulations with White Noise
- **8** Summary
- 9 Future Work
- References
- Acknowledgements



Introduction

- VLBI Geodesy concerns with precise measurements of Earth Orientation Parameters (EOP) and station positions
- The primary observable is the time difference (or delay) between two stations from quasar signals
- Radio signal subject to ionospheric and tropospheric delays

[Modified after Vondrák, 2018]


[Modified after SGPTechniques: VLBI 2025]

Atmospheric Delays & Modelling

- Hydrostatic and wet delay
 - Hydrostatic: calculated from atmospheric pressure at surface
 - Wet: estimated with geodetic techniques or measured by water vapor radiometer
- C_n^2 : refractive index structure constant, magnitude (strength) of turbulence
- C_n^2 can vary seasonally in some locations

[Modified after Halsig et al., 2016]

August 7, 2025

Traditional Simulation Approach

- Run simulations before real sessions to optimize scheduling
 - New scheduling strategies
 - Station network geometries
 - Influence of specific effects (atmosphere, source structure)
- Current VLBI simulations utilize constant C_n^2 values, despite well-established seasonality

$$o - c = (zwd_2 \cdot mf(\epsilon_2) + clk_2) - (zwd_1 \cdot mf(\epsilon_1) + clk_1) + wn_{bsl}$$

5/21

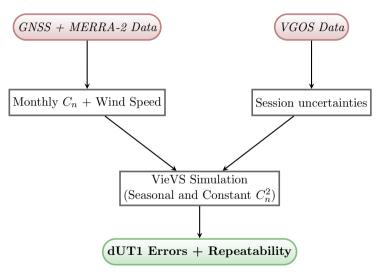
Project Goals

- Calculate monthly C_n^2 values from nearby GNSS stations
- Incorporate seasonal C_n^2 variations into session simulations
- Assess impact on EOPs (dUT1) using VLBI "Intensive" sessions
 - Simpler network geometry, fewer stations
 - More frequent sessions per baseline
 - Lower latency
- Compare results with traditional approach

Data

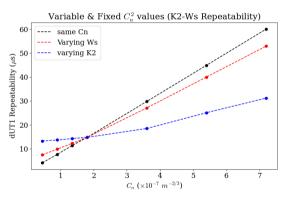
- ullet GNSS Data: Wet delay data from Nevada Geodetic Laboratory to calculate C_n^2
- MERRA-2 Reanalysis Data Model: to calculate C_n^2 and obtain wind speed
- VLBI Data: Intensive sessions from 2021-2024 from CDDIS

Methods: Obtaining C_n^2


- Calculate monthly (τ) variance of zenith wet delays (ZWD)
- Net wind speed (v) from NASA MERRA-2 reanalysis data model
- Effective height of troposphere (H)

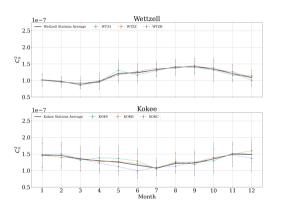
$$\sigma^2_{ZWD}(\tau) = \frac{1}{\tau^2} \int_0^\tau (\tau - t) \int_0^H \int_0^H C_n^2(z, z') \left[((z - z')^2 + v^2 t^2)^{\frac{1}{3}} - \left| z - z' \right|^{\frac{2}{3}} \right] dz dz' dt$$

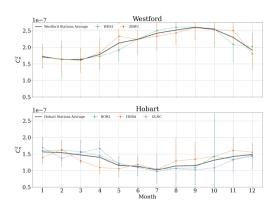
Processing



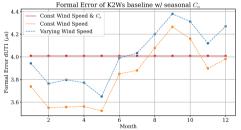
Impact of C_n^2 on Repeatability

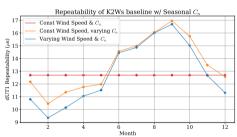
- Wettzell (Ws) contributes more to variability than Kokee (K2)
- Suggests site-specific turbulence impacts




• Changes in tropospheric turbulence parameters (such as C_n^2) have greater impacts at certain stations, dependent on the baseline geometry

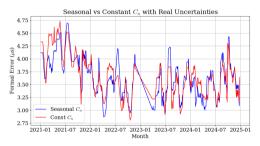
Seasonal C_n^2 Variations

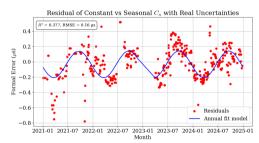

• C_n^2 is higher in summer and is dependent on local climate conditions



Impact of Seasonal C_n^2 on Formal Error and Repeatability

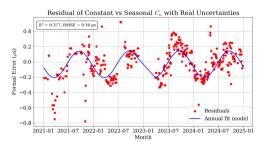
- Simulations in VieSched (Schartner et al., 2019) and VieVS (Böhm et al., 2018)
- Monte Carlo simulations assume Gaussian distribution

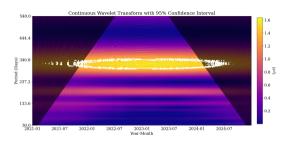

- The traditional simulation approach does not contain seasonal variations in formal error and repeatability
- Wind speed has minimal effect on repeatability



Impact of Seasonal C_n^2 on Formal Error

• We implement C_n^2 variations in simulations of past sessions, which includes variations in numbers of observations and other sources of errors


VieVS Simulation

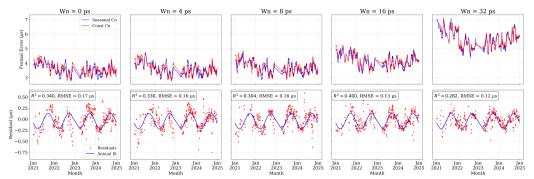

Residuals (Seasonal C_n^2 - Constant C_n^2)

- Seasonal C_n^2 variations result in seasonality in the dUT1 formal error residuals
- The constant C_n^2 approach underestimates formal error in the summer

Impact of Seasonal C_n^2 on Formal Error

Residuals

Continuous Wavelet Transform


• Once dUT1 formal errors are corrected for other sources of error, variations have a dominant period of approximately 1 year

Simulations with White Noise

• White noise is used to model measurement noise

White Noise Comparison

• Below a certain level of added white noise, atmospheric turbulence is the largest contributor to formal error

Summary

- Modelling seasonality of local C_n values for VLBI stations
- Incorporating C_n variations in simulations of dUT1 intensives
- Number of observations per session contribute to variations in formal error to a greater extent, however
 - Residuals reveal a strong seasonality in formal error for dUT1
- The traditional approach underestimates dUT1 formal error in the summer

Future Work

- Inclusion of Southern stations to mitigate seasonality
- 24-hr sessions and complicated network geometries
- Analysis of additional EOPs

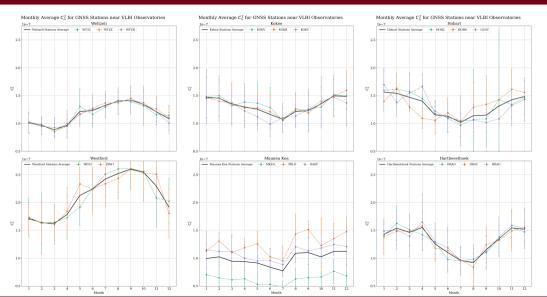
References I

- Böhm, Johannes et al. (2018): "Vienna VLBI and Satellite Software (VieVS) for Geodesy and Astrometry". In: *Publications of the Astronomical Society of the Pacific* 130.986. DOI: 10.1088/1538-3873/aaa22b.
- Halsig, Sebastian et al. (2016): "Using an atmospheric turbulence model for the stochastic model of geodetic VLBI data analysis". In: *Earth, Planets and Space* 68.1, p. 106. DOI: 10.1186/s40623-016-0482-5. (Visited on 08/01/2025).
- Schartner, Matthias and Böhm, Johannes (2019): "VieSched++: A New VLBI Scheduling Software for Geodesy and Astrometry". In: *The Astronomical Society of the Pacific* 131.1002. DOI: 10.1088/1538-3873/ab1820.
- URL: https://space-geodesy.nasa.gov/techniques/VLBI.html SGP Techniques: VLBI (2025): URL: https://space-geodesy.nasa.gov/techniques/VLBI.html (visited on 08/01/2025).
- Vondrák, Jan (2018): "History of Monitoring Earth Orientation, and Re-analyses of Old Data". en.
 In: International Symposium on Earth and Environmental Sciences for Future Generations.
 Ed. by Jeffrey T. Freymueller and Laura Sánchez. Cham: Springer International Publishing, pp. 203-211. DOI: 10.1007/1345'2016'241.

Acknowledgements I

Thank you to my mentors, Dhiman Mondal, Pedro Elosegui, Chester Ruszczyk, John Barrett, Dan Hoak, and Russ McWhirter for all of your guidance and support with this project.

This work was funded by the National Science Foundation (NSF) as a part of the Research Experience for Undergraduates (REU) at MIT Haystack Observatory, funding award 2243909.


Summary

- Modelling seasonality of local C_n values for VLBI stations
- Incorporating C_n variations in simulations of dUT1 intensives
- Number of observations per session contributes to variations in formal error to a greater extent, however
 - Residuals reveal a strong seasonality in formal error for dUT1
- The traditional approach underestimates dUT1 formal error in the summer

Appendix A: Seasonal C_n^2 Variations

