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Introduction

• VLBI Geodesy concerns with
precise measurements of Earth
Orientation Parameters (EOP)
and station positions

• The primary observable is the
time difference (or delay)
between two stations from
quasar signals

• Radio signal subject to
ionospheric and tropospheric
delays

[Modified after Vondrák, 2018] [Modified after SGP
Techniques: VLBI 2025]
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Atmospheric Delays & Modelling

• Hydrostatic and wet delay
• Hydrostatic: calculated from atmospheric

pressure at surface
• Wet: estimated with geodetic techniques or

measured by water vapor radiometer

• C2
n: refractive index structure constant,

magnitude (strength) of turbulence

• C2
n can vary seasonally in some locations

[Modified after Halsig et al., 2016]
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Traditional Simulation Approach

• Run simulations before real sessions to optimize scheduling
• New scheduling strategies
• Station network geometries
• Influence of specific effects (atmosphere, source structure)

• Current VLBI simulations utilize constant C2
n values, despite well-established

seasonality

o− c = (zwd2 ·mf(ϵ2) + clk2)− (zwd1 ·mf(ϵ1) + clk1) + wnbsl
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Project Goals

• Calculate monthly C2
n values from nearby GNSS stations

• Incorporate seasonal C2
n variations into session simulations

• Assess impact on EOPs (dUT1) using VLBI ”Intensive” sessions
• Simpler network geometry, fewer stations
• More frequent sessions per baseline
• Lower latency

• Compare results with traditional approach
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Data

• GNSS Data: Wet delay data from Nevada Geodetic Laboratory to calculate C2
n

• MERRA-2 Reanalysis Data Model: to calculate C2
n and obtain wind speed

• VLBI Data: Intensive sessions from 2021-2024 from CDDIS
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Methods: Obtaining C2
n

• Calculate monthly (τ) variance of zenith wet delays (ZWD)

• Net wind speed (v) from NASA MERRA-2 reanalysis data model

• Effective height of troposphere (H)
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Processing

GNSS + MERRA-2 Data VGOS Data

Monthly Cn + Wind Speed Session uncertainties

VieVS Simulation
(Seasonal and Constant C2

n)

dUT1 Errors + Repeatability
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Impact of C2
n on Repeatability

• Wettzell (Ws) contributes more
to variability than Kokee (K2)

• Suggests site-specific
turbulence impacts

• Changes in tropospheric turbulence parameters (such as C2
n) have greater

impacts at certain stations, dependent on the baseline geometry
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Seasonal C2
n Variations

• C2
n is higher in summer and is dependent on local climate conditions
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Impact of Seasonal C2
n on Formal Error and Repeatability

• Simulations in VieSched (Schartner et al., 2019) and VieVS (Böhm et al., 2018)

• Monte Carlo simulations assume Gaussian distribution
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• The traditional simulation approach does not contain seasonal variations in
formal error and repeatability

• Wind speed has minimal effect on repeatability
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Impact of Seasonal C2
n on Formal Error

• We implement C2
n variations in simulations of past sessions, which includes

variations in numbers of observations and other sources of errors

VieVS Simulation Residuals (Seasonal C2
n - Constant C2

n)

• Seasonal C2
n variations result in seasonality in the dUT1 formal error

residuals

• The constant C2
n approach underestimates formal error in the summer
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Impact of Seasonal C2
n on Formal Error

Residuals Continuous Wavelet Transform

• Once dUT1 formal errors are corrected for other sources of error, variations
have a dominant period of approximately 1 year
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Simulations with White Noise

• White noise is used to model measurement noise

White Noise Comparison

• Below a certain level of added white noise, atmospheric turbulence is the
largest contributor to formal error
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Summary

• Modelling seasonality of local Cn values for VLBI stations

• Incorporating Cn variations in simulations of dUT1 intensives

• Number of observations per session contribute to variations in formal error to a
greater extent, however

• Residuals reveal a strong seasonality in formal error for dUT1

• The traditional approach underestimates dUT1 formal error in the summer
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Future Work

• Inclusion of Southern stations to mitigate seasonality

• 24-hr sessions and complicated network geometries

• Analysis of additional EOPs
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Summary

• Modelling seasonality of local Cn values for VLBI stations
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Appendix A: Seasonal C2
n Variations
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