The IRI’s B parameters measured by the MU radar

S.-R. Zhang¹, S. Fukao¹, X.-Y. Huang² and Y. Otsuka¹

¹ Radio Atmospheric Science Center, Kyoto University, 611-0011 Uji, Kyoto, Japan
² Wuhan Institute of Physics and Mathematics, CAS, P. O. Box 71010, Wuhan 430071, China

ABSTRACT

The IS measurements of power profile by the MU radar at Shigaraki (34.9°N, 136.1°E) are analyzed to give IRI’s B-parameters, B_0, B_1, for 1986-1991. Empirical formulas are obtained to represent their variations as functions of local time and season at high solar activity. They are compared also with ionosonde ones for Wuchang (30.5°N, 114.4°E).

INTRODUCTION

The IRI bottoms, N_e profile is defined as $N(h)/N_m F_2 = \exp(-\chi^{B_1}/\cosh(\chi))$ with $\chi = (h m F_2 - h)/B_0$ (Bilitza, 1990). B_1 is set equal to 3 usually, while the thickness parameter B_0 is provided by the tabular values which have been deduced from ionosonde observations at few locations. Recommendations have been made recently to establish global plots and include new values in IRI of the B-parameters [Reinish and Huang, 1997; Zhang and Huang, 1998]. The present paper will show results from the MU radar IS measurements of the power profile for 1986-1992 at Shigaraki (34.85°N, 136.10°E). They are also compared with ionosonde results at Wuchang (30.5°N, 114.4°E).

DATA

The MU radar IS measurements of power profile operate normally with 4.8 km height resolution and 1 hour time resolution. We have not corrected the plasma temperature effects in deriving N_e profile from the power profile, which may cause an error less than 15 km. The data are grouped according to season and solar activity, i.e., 1986-1987 for low solar activity (LSA), 1989-1991 for high solar activity (HSA); November-February for winter, May-August for summer and others for equinox. The hourly data number is larger usually in HSA.

The “best” B_0 and B_1 are obtained by fitting the IRI profile to the measured power profile from the F_2-peak to $h_{o,24}$ if no F_1-layer exists or to the F_1 peak if F_1-layer occurs. In general, these fits of the profiles are found to be fairly good.
THE IRI B-PARAMETERS

As shown in Figures 1-2, B_i averages are found to be between 2-3, smaller by day and for LSA, and changing little with season. B_0 is between 70-120 km varying with season and solar activity. At HSA, it is larger for summer season than for winter, especially for daytime. It increases with solar activity.

![Figure 1: Diurnal variations of B_i and B_0 at low solar activity and high solar activity for summer (dashed), winter (dotted), equinox (chain). Given also are the yearly average (solid), its standard deviations and data numbers.](image)

Empirical formulas are constructed to represent the HSA B_0 and B_i as a function of local time, season:

\[
B_0 \text{ (km)} = (5.25s + 12.08) \cos[1.32 \times 2\pi(t + 0.46s + 4.44) / 24] + 0.52t + 6.92s + 77.44
\]

\[
B_i = 0.47 \cos[1.22 \times 2\pi(t - 1.65) / 24] + 0.01t + 2.41
\]

(t, local time, hour; $s = 1,2,3$ for winter, equinox and summer)
The original data by day can be reasonably reproduced by the above model (Figure 2).

Fig. 2. A comparison of B_0 at high solar activity obtained with measurements and with the model.

Fig. 3. A comparison of B_0 measured from Shigaraki and Wuchang at midday and midnight.
Compared with the ionosonde one for Wuchang, MU radar B_1 for Shigaraki at noon is smaller in summer but greater in winter; at midnight they are more or less close to each other (see Figure 3). For B_1 values, best agreements are found at midnight for LSA, at HSA, however, Shigaraki B_1 is near to 3 but Wuchang B_1 to 2 --- such a large difference could possibly be in part due to the lack of plasma temperature correction for the MU radar power profile data; at noon, the former is larger than the later, especially in summer and equinox (see Figure 4).

![Figure 3](image)

Fig. 3. A comparison of B_1 measured from Shigaraki and Wuchang at midday and midnight.

ACKNOWLEDGMENTS

The MU radar belongs to and operated by the Radio Atmospheric science center (RASC) of Kyoto University. S.R. Z. acknowledges supports from the COE Program of the Ministry of Education, Science, Sports and Culture of Japan, and from the NSF of China.

REFERENCE

