NTT’s Ultra-High-Speed Networking Experiment on Real-time VLBI

Joint Trials with CRL, NAOJ and ISAS (KSP and GALAXY)

Hisao Uose, Kazunari Irie & Sotetsu Iwamura

NTT Laboratories
History

- A part of NTT's Ultra-High-Speed Networking Research Project which started in June 1995
- “Real-time VLBI” is a joint effort of NTT Laboratories, Communications Research Laboratory (CRL), National Astronomical Observatory of Japan (NAOJ) and Institute of Space and Astronautical Science (ISAS)
- We’ve built a large-scale dedicated network spanning Kanto/Shin-etsu areas (total fibre length was about 1,000km) connecting radio telescopes and processing units with OC-48 (2.4Gb/s) circuits, ATM Switches and high-performance IP and started its operation in 1996
Why do we (NTT) do this????

• Establish technologies for very high speed communications (Gb/s class for each application)
 - We’ve developed a special purpose network equipment for the trial

• Explore the effectiveness of ultra-high-speed communications technologies in advanced science and create new communications application

• Contribute to Science and Society
Real-time VLBI Applications

• Geodesy (KSP: Key Stone Project)
 - High precision crustal deformation measurement system using realtime VLBI in Kanto Area
 - Challenges for advanced earth science and precise space navigation technologies

• Radio astronomy (OLIVE & GALAXY Projects)
 - Ultra-high resolution/sensitivity radio telescope combining VLBI and Gigabit class networks
 - Challenges for opening a new vista of radio astronomy
GALAXY/KSP Network: Geographical View

- ISAS Usuda Deep Space Center (Nagano)
- NTT Musashino R&D Center
- CRL Kashima Research Center
- ISAS Usuda Deep Space Center (Nagano)
- NAOJ Nobeyama Radio Observatory (Nagano)
- CRL (Koganei)
- NAOJ (Mitaka)
- NTT Musashino R&D Center

Dedicated Network
- OC-48 (2.4Gb/s)
- OC-48 x n (with WDM)

208km

4/18/2002
Hisao Uose, NTT Laboratories
Antennas Used for our Experiments

Usuda 64m

Nobeyama 45m

Kashima 34m

11m antennas for KSP
(Koganei, Tateyama, Miura, Kashima)
(Simplified) Logical Network Configuration

Under construction

Disconnected (11/02)

ID1 I/F to connect samplers and correlators

Network Equipment

ATM NW IF

ATM-SW

Router

Network Interface

ATM

GbE

4/18/2002

Hisao Uose, NTT Laboratories
KSP: Geodesy using Realtime VLBI

• NTT joined the CRL’s Key Stone Project (KSP) to help them achieve the very high resolution measurement system of crustal deformation in Kanto area using realtime VLBI in 1995

• Regular (every other day) measurement has been conducted until November 2001 and the obtained data were utilized for the research of earth science
 - A major deformation due to a sudden volcanic activity around Izu Island has been observed last year
 - A large amount of measurement data is publicly offered to earth science community through the CRL web site
KSP Measurement Sites in Tokyo Area

4/18/2002
Hisao Uose, NTT Laboratories
Ultra-high Resolution Radio Telescope

- Started as NTT·NAOJ·ISAS project (OLIVE) to implement the largest virtual radio telescopes using multiple terrestrial/space antennas with realtime VLBI

- Flexible and precise observation can be obtained only with realtime data transmission and processing
 - First fringe (cross correlation) was detected in 1997 between the signals received by a terrestrial antenna (Usuda) and a satellite antenna (HALCA)
 - Realtime correlation has been successfully established among large terrestrial antennas (Usuda, Nobeyama and Kashima) in 1998

- **GALAXY** started as a joint project of KSP and OLIVE in 1999
Significance of Our Observation System

- The first realtime VLBI system using ultra high speed digital communications networks (several Gb/s)
- High sensitivity/resolution obtained by high-speed connections
 - The sensitivity obtained of our system is comparable to the highest sensitivity achieved (5~10mJy) which is only available on a magnetic tape-based system (non-realtime)
- Flexible Observation with realtime data processing
 - Experiment plan can be easily rescheduled according to the results obtained with the realtime observation
- Experiment support system utilising multimedia conference system and ultra high speed networks
Future (1): Upgrading Connectivity

• Performance Upgrade with Higher Data Transmission Rate
 - We’ve succeeded an experiment with higher speed (1Gb/s) last year which outperforms any system in the world

• Addition of Antennas
 - Addition of other antennas to the GALAXY network are being sought which improve both sensitivities and resolution of the resulting radio telescope

• International Cooperation
 - We are seeking the possibility of international cooperation with research organizations abroad including MIT Haystack Observatory and the Internet2 project
Future (2): Internet-based VLBI

• Adoption of very high speed IP technology to realtime VLBI, which will make the realtime VLBI observation more economical and widespread
 - High speed IP stream transmission system applicable to the realtime VLBI has been developed
 - Distributed processing utilizing a huge number of PCs on the net should be very interesting as well (just started)

• Supporting tools for distributed realtime VLBI observations
 - Multimedia conferencing system using IP Multicast

• The standardization of interface between data acquisition/processing units and network is crucial for Internet VLBI
 - Expansion of VSI (VLBI Standard Interface) ??
Supporting Environment for Observation

- Sharing of critical information among participating sites is a must
- Multimedia Communications tools with IP multicast is being tested
- Multicasting of radio signal is interesting for distributed processing
Future (3): Cooperation with Other Projects

- **Cooperation with Internet2 project**
 - NTT is a Corporate member of I2 since 1998
 - GEMnet has been connected to Abilene (I2 backbone) this year
- **Cooperation with ASTE/ALMA project and U. Chile**
 - NTT started to cooperate in developing new photo detectors and data processing technologies applicable for ALMA/ASTE project
 - NTT has been working with University of Chile which is helping the ALMA project in Chile (AccessNova Project) for over five years
 - High-speed link between Chile and Japan has been established with Internet2’s ITS (International Transit Service) to REUNA via AMPATH
- **New research initiative within NTT labs**
 - We’ve started to cooperate with other sections of NTT Labs to accelerate R&D with “synergy” effect
 - “AWG-STAR” photonic device and HD video transmission system are already deployed in our network
GEMnet-Abilene Connections

- Connections through STARTAP (April 2001) and Sunnyvale (June 2001)
- Connectivity to 187 I2 member universities
- International Transit Service which enables us to connect 15 other academic networks

- **Connection Point (OC-3)**
- **33Mbps (10Mbps for Abilene)**
- **To Japan**

GEMnet-Abilene Connections:
- **Connections through STARTAP (April 2001) and Sunnyvale (June 2001)**
- **Connectivity to 187 I2 member universities**
- **International Transit Service which enables us to connect 15 other academic networks**

4/18/2002 Hisao Uose, NTT Laboratories
Cooperation with NAO and U. Chile

Remote monitoring/control of ASTE/ALMA telescope will start soon with the cooperation of Internet2(Abilene), AMPATH and REUNA2

ASTE 10m Prototype Telescope at the height of 4,800m
Conclusion

• We did very well considering the limited resources
 - Though, we might have been able to do more!!
 - and, other groups are working very hard!!

• Necessity of widening our perspective in technological sense
 - “Network computing” can be another big business for NTT
 - GALAXY could be a nice testbed not only for advanced networking technologies but also for those new middleware and applications technologies

• and cultural aspects
 - International collaborations (and joint effort in general) will multiply the results of each participating group